Dendritic cells and macrophages are common components of the tumour immune microenvironment and can contribute to immune suppression in both solid and haematological cancers. The Bone Morphogenetic Protein (BMP) pathway has been reported to be involved in cancer, and more recently in leukaemia development and progression. In the present study, we analyse whether acute lymphoblastic leukaemia (ALL) cells can affect the differentiation of dendritic cells and macrophages and the involvement of BMP pathway in the process. We show that ALL cells produce BMP4 and that conditioned media from ALL cells promote the generation of dendritic cells with immunosuppressive features and skew M1-like macrophage polarization towards a less pro-inflammatory phenotype. Likewise, BMP4 overexpression in ALL cells potentiates their ability to induce immunosuppressive dendritic cells and favours the generation of M2-like macrophages with pro-tumoral features. These results suggest that BMP4 is in part responsible for the alterations in dendritic cell and macrophage differentiation produced by ALL cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679123 | PMC |
http://dx.doi.org/10.3390/cells8070722 | DOI Listing |
Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens. Here, we address questions of how LECs achieve durable antigen archiving and whether LECs with high levels of antigen express unique transcriptional programs. We used single cell sequencing in dissociated LN tissue and spatial transcriptomics to quantify antigen levels in LEC subsets and dendritic cell populations at multiple time points after immunization and determined that ceiling and floor LECs archive antigen for the longest duration.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
High-energy lithium metal batteries (LMBs) have received ever-increasing interest. Among them, coupling lithium metal (Li) with nickel-rich material, LiNiMnCoO (NMCs, ≥ 0.6, + + = 1), is promising because Li anodes enable an extremely high capacity (∼3860 mA h g) and the lowest redox potential (-3.
View Article and Find Full Text PDFMol Cancer Ther
December 2024
Augusta University, Augusta, Georgia, United States.
Glioblastoma (GBM) is the most frequent malignant brain tumor. We recently discovered that oncolytic herpes simplex virus engineered to disable tumor-intrinsic protein kinase R (PKR) signaling (oHSV-shPKR) could increase oHSV oncolysis and anti-tumor immune response. However, here we show that disabling tumor-intrinsic PKR signaling can also induce the activation of the indoleamine 2,3-dioxygenase (IDO) signaling pathway.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium.
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to () or () increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!