Performance Improvement of Time-Differenced Carrier Phase Measurement-Based Integrated GPS/INS Considering Noise Correlation.

Sensors (Basel)

School of Mechanical and Aerospace Engineering and the Institute of Advanced Aerospace Technology, Seoul National University, Seoul 08826, Korea.

Published: July 2019

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS. The results of a dynamic simulation and an experiment conducted to verify the efficacy of the proposed system indicate that it can achieve performance improvements of up to 70% and 60%, respectively, compared to the conventional algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678740PMC
http://dx.doi.org/10.3390/s19143084DOI Listing

Publication Analysis

Top Keywords

carrier phase
12
time-differenced carrier
8
noise correlation
8
navigation system
8
system
6
performance improvement
4
improvement time-differenced
4
phase measurement-based
4
measurement-based integrated
4
integrated gps/ins
4

Similar Publications

Background: RING finger protein 213 () p.R4810K is an established risk factor for moyamoya disease and intracranial artery stenosis in East Asian people. Recent evidence suggests its potential association with extracranial cardiovascular diseases, including pulmonary hypertension.

View Article and Find Full Text PDF

Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.

Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

Background:  Circulating tumor cells and clusters (CTC) from soft-tissue sarcoma (STS) that become entrapped in the lung can form micro-metastases and lead to pulmonary metastatic disease. Many patients with localized high-risk STS later develop metastases. Radiation is effective at reducing local recurrence by eradicating microscopic infiltration and satellites in the reactive zone surrounding the primary tumor.

View Article and Find Full Text PDF

Weak Antilocalization and Negative Magnetoresistance of the Gate-Tunable PbTe Thin Films.

J Phys Chem Lett

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.

We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!