For a visual/inertial integrated system, the calibration of extrinsic parameters plays a crucial role in ensuring accurate navigation and measurement. In this work, a novel extrinsic parameter calibration method is developed based on the geometrical constraints in the object space and is implemented by manual swing. The camera and IMU frames are aligned to the system body frame, which is predefined by the mechanical interface. With a swinging motion, the fixed checkerboard provides constraints for calibrating the extrinsic parameters of the camera, whereas angular velocity and acceleration provides constraints for calibrating the extrinsic parameters of the IMU. We exploit the complementary nature of both the camera and IMU, of which the latter assists in the checkerboard corner detection and correction while the former suppresses the effects of IMU drift. The results of the calibration experiment reveal that the extrinsic parameter accuracy reaches 0.04° for each Euler angle and 0.15 mm for each position vector component (1σ).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679094 | PMC |
http://dx.doi.org/10.3390/s19143086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!