The purpose of the present study was to evaluate the effects of bakuchiol on the inflammatory response and to identify the molecular mechanism of the inflammatory effects in a lipopolysaccharide (LPS)-stimulated BV-2 mouse microglial cell line and mice model. The production of prostaglandin E (PGE), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 was measured using reverse transcription-polymerase chain reaction analysis. Mitogen-activated protein kinase (MAPK) phosphorylation was determined by western blot analysis. In vitro experiments, bakuchiol significantly suppressed the production of PGE and IL-6 in LPS-stimulated BV-2 cells, without causing cytotoxicity. In parallel, bakuchiol significantly inhibited the LPS-stimulated expression of iNOS, COX-2, and IL-6 in BV-2 cells. However, bakuchiol had no effect on the LPS-stimulated production and mRNA expression of TNF-α or on LPS-stimulated c-Jun NH2-terminal kinase phosphorylation. In contrast, p38 MAPK and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by bakuchiol. In vivo experiments, Bakuchiol reduced microglial activation in the hippocampus and cortex tissue of LPS-injected mice. Bakuchiol significantly suppressed LPS-injected production of TNF-α and IL-6 in serum. These results indicate that the anti-neuroinflammatory effects of bakuchiol in activated microglia are mainly regulated by the inhibition of the p38 MAPK and ERK pathways. We suggest that bakuchiol may be beneficial for various neuroinflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678636PMC
http://dx.doi.org/10.3390/ijms20143574DOI Listing

Publication Analysis

Top Keywords

bakuchiol
10
effects bakuchiol
8
lps-stimulated bv-2
8
il-6 measured
8
mrna expression
8
tnf-α il-6
8
experiments bakuchiol
8
bakuchiol suppressed
8
bv-2 cells
8
p38 mapk
8

Similar Publications

Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of via Targeting PqsR.

Int J Mol Sci

December 2024

Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.

As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.

View Article and Find Full Text PDF
Article Synopsis
  • Biofilms, which are multicellular bacterial communities embedded in an extracellular matrix, enhance bacterial survival and contribute to severe infections due to their increased antibiotic resistance.
  • Quorum sensing plays a critical role in biofilm production, making it essential to develop new strategies to combat biofilm-related infections, particularly for conditions like post-surgery and wound infections.
  • Plant extracts and purified phytochemicals have shown significant potential in inhibiting biofilm formation and may serve as promising agents in treating infections caused by biofilms.
View Article and Find Full Text PDF

Bakuchiol from and its efficacy on apoptosis and autophagy in HepG2 cells.

Heliyon

December 2024

Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.

Bakuchiol (), a component of , has been reported to have estrogenic, antimicrobial, and anti-inflammatory activities. Nonetheless, its anticancer mechanisms and effectiveness against hepatocellular carcinoma remain unexplored. This study sought to elucidate the mechanism of apoptosis, autophagy, and cell cycle arrest caused by bakuchiol () and three flavonoids (-) with similar structures to compound in hepatocellular carcinoma.

View Article and Find Full Text PDF

Background: Vitamin A, or retinol, is one of the most effective antiaging molecules, but it presents issues with photo-sensitivity and irritation. Alternatives are emerging, but have so far been less effective.

Objective: Here, we present a Silibum marianum extract (SME) as a retinol-like ingredient providing both safety and efficacy.

View Article and Find Full Text PDF

In the present manuscript, we evaluated the analgesic, anti-inflammatory and anti-arthritic effects of bakuchiol derivative, O-acetyl bakuchiol (BAc), at 5, 10 and 20 mg/kg p.o. doses in adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!