The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO/Si substrates exhibits a linear trend with the number of hBN monolayers in the few-layer thickness range. We also used bandpass filters (500-650 nm) to improve the effectiveness of the optical contrast methods for thickness estimations. We also investigated the thickness dependence of the high frequency in-plane E phonon mode of atomically thin hBN on SiO/Si substrates by micro-Raman spectroscopy, which exhibits a weak thickness-dependence attributable to the in-plane vibration character of this mode. Ab initio calculations of the Raman active phonon modes of atomically thin free-standing crystals support these results, even if the substrate can reduce the frequency shift of the E phonon mode by reducing the hBN thickness. Therefore, the optical contrast method arises as the most suitable and fast technique to estimate the thickness of hBN nanosheets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669639 | PMC |
http://dx.doi.org/10.3390/nano9071047 | DOI Listing |
J Vis
January 2025
Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Tecnológico Nacional de México Campus Tuxtla, Carretera Panamericana Km 1080, Tuxtla Gutiérrez C.P. 29050, Mexico.
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.
View Article and Find Full Text PDFJ Imaging
January 2025
School of Information Technology, Sripatum University, Bangkok 10900, Thailand.
This study introduces a novel AI-driven approach to support elderly patients in Thailand with medication management, focusing on accurate drug label interpretation. Two model architectures were explored: a Two-Stage Optical Character Recognition (OCR) and Large Language Model (LLM) pipeline combining EasyOCR with Qwen2-72b-instruct and a Uni-Stage Visual Question Answering (VQA) model using Qwen2-72b-VL. Both models operated in a zero-shot capacity, utilizing Retrieval-Augmented Generation (RAG) with DrugBank references to ensure contextual relevance and accuracy.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead.
View Article and Find Full Text PDFFront Neurosci
January 2025
School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
Purpose: Astigmatism can lead to meridional amblyopia, an orientation-specific visual deficit. This study investigated the effects of astigmatism on meridional anisotropy in contrast sensitivity (CS) and steady-state visual evoked potential (ssVEP) across a range of spatial frequencies.
Methods: Thirty-two young adults with a best-corrected distance visual acuity of logMAR 0 or better were categorized into two groups: highly astigmatic (HAS, = 16) with spherical-equivalent error (SE) ≥ -6.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!