Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical vapor deposition and electrospinning techniques with subsequent chemical treatment. Meanwhile, the surfaces of CNFs are easy to modify with various materials to extend the applications of CNF-based hybrid nanomaterials in multiple fields. In this review, we focus on the design, synthesis, and sensor applications of CNF-based functional nanomaterials. The fabrication strategies of CNF-based functional nanomaterials by adding metallic nanoparticles (NPs), metal oxide NPs, alloy, silica, polymers, and others into CNFs are introduced and discussed. In addition, the sensor applications of CNF-based nanomaterials for detecting gas, strain, pressure, small molecule, and biomacromolecules are demonstrated in detail. This work will be beneficial for the readers to understand the strategies for fabricating various CNF-based nanomaterials, and explore new applications in energy, catalysis, and environmental science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669495 | PMC |
http://dx.doi.org/10.3390/nano9071045 | DOI Listing |
Sci Rep
January 2025
Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
To illustrate the anti-diabetic properties of Berberis orthobotrys seeds was the aim of the current study. After a series of experiments, two doses of aqueous methanolic extract of the seeds were selected i.e.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China. Electronic address:
Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
The rational design of engineered nanomaterials (NMs) with improved functionality and their increasing industrial application requires reliable, validated, and ultimately standardized characterization methods for their application-relevant, physicochemical key properties such as size, size distribution, shape, or surface chemistry. This calls for nanoscale (certified) reference materials (CRMs; RMs) and well-characterized reference test materials (RTMs) termed also quality control (QC) samples, assessed, e.g.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.
The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!