A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of covalently Nile Red and covalently Rhodamine labeled fluorescent polymer micelles for the improved imaging of the respective drug delivery system. | LitMetric

Novel fluorescently labeled poly(ethylene glycol)-poly(hydroxyoctanoic acid) (MPEG-PHOA) block-copolymers were synthesized for the improved visualization of the deriving polymeric micelle drug delivery system. Albeit commonly used, one has to be aware that by simple incorporation of Nile Red (hydrophobic) or Rhodamine B (hydrophilic) as fluorescent compounds in nanocarriers (e.g., nanoparticles, liposomes or micelles) for imaging applications, these fluorescent probes can diffuse out of the carrier system and lead to artefacts due to the concomitant fluorescence loss or areal distribution. In order to inhibit such an uncontrolled diffusion, the Nile Red derivative 2-((9-(diethylamino)-5-oxo-5H-benzo[a]phenoxazin-2-yl)oxy)acetic acid was synthesized and covalently attached to the MPEG-PHOA block-copolymer via a mild Mitsunobu reaction to yield the desired MPEG-PHOA-Nile Red polymer for micelle preparations. Rhodamine B was coupled via its native carboxylic acid group with the copolymer MPEG-PHOA under mild conditions using DMAP, EDC, and NHS. For the proof of concept, aqueous solutions of composite micelles made of 0.5% (w/w fluorescence dye) MPEG-PHOA-dye and MPEG-PHOA copolymers were prepared ("spiking" of the non-labeled base MPEG-PHOA micelles) and characterized by transmission electron microscopy (TEM), dialysis and fluorescence spectrometry. The fluorescence intensity of the Nile Red in the solutions was followed up at physiological temperatures and pH values (37 °C, pH = 7.4 PBS buffer 0.01 M) over a period of 8 weeks. The labeled and non-labeled micelle formulations were tested in vitro in cells (Rhodamine-micelle formulations), then in vivo in a case study of an ophthalmic application (Nile Red micelle formulations). Both in vitro and in vivo experiments revealed a significant improvement of fluorescence stability of the MPEG-PHOA-dye formulations, facilitating the investigations on tracing the micelles and their stability. The results clearly demonstrate the value of the novel Nile Red and Rhodamine derivatives, whose simple synthesis and covalent attachment may easily be transferred to other nanosized polymeric drug delivery systems, e.g., MPEGylated or non-MPEGylated PLA/PLGA nanoparticles and be envisioned for novel theranostic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2019.07.020DOI Listing

Publication Analysis

Top Keywords

nile red
24
drug delivery
12
delivery system
8
micelle formulations
8
red
7
nile
6
micelles
5
mpeg-phoa
5
fluorescence
5
impact covalently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!