Transmission-blocking vaccines (TBVs) target the sexual stages of malarial parasites to interrupt or reduce the transmission cycle have been one of approaches to control malaria. Pvs25 and Pvs28 are the leading candidate antigens of TBVs against vivax malaria. In this study, genetic diversity and natural selection of the two TBV candidate genes in Plasmodium vivax Myanmar isolates were analyzed. The 62 Myanmar P. vivax isolates showed 9 and 19 different haplotypes for Pvs25 and Pvs28, respectively. The nucleotide diversity of Pvs28 was slightly higher than Pvs25, but not significant. Most amino acid substitutions observed in Myanmar Pvs25 and Pvs28 were concentrated at the EGF-2 and EGF-3 like domains. Major amino acid changes found in Myanmar Pvs25 and Pvs28 were similar to those reported in the global population, but novel amino acid substitutions were also identified. Negative selection was predicted in Myanmar Pvs25, whereas Pvs28 was under positive selection. Comparative analysis of global Pvs25 and Pvs28 suggests a substantial geographical difference between the Asian and American/African Pvs25 and Pvs28. The geographical genetic differentiation and the evidence for natural selection in global Pvs25 and Pvs28 suggest that the functional consequences of the observed polymorphism need to be considered for the development of effective TBVs based on the antigens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2019.105104 | DOI Listing |
Infect Genet Evol
March 2024
College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand.
BMC Infect Dis
December 2022
Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
Acta Trop
October 2019
Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea; BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea. Electronic address:
PLoS Negl Trop Dis
June 2016
Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America.
Vaccine
April 2015
Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan. Electronic address:
Malaria transmission-blocking vaccines (TBV) aim to interfere with the development of the malaria parasite in the mosquito vector, and thus prevent spread of transmission in a community. To date three TBV candidates have been identified in Plasmodium vivax; namely, the gametocyte/gamete protein Pvs230, and the ookinete surface proteins Pvs25 and Pvs28. The Plasmodium falciparum gametocyte/gamete stage proteins Pfs48/45 and Pfs47 have been studied as TBV candidates, and Pfs48/45 shown to induce transmission-blocking antibodies, but the candidacy of their orthologs in P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!