A qualitative transcriptional signature for the early diagnosis of colorectal cancer.

Cancer Sci

Department of Bioinformatics, School of Basic Medical Sciences, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.

Published: October 2019

Currently, using biopsy specimens for the early diagnosis of colorectal cancer (CRC) is not entirely reliable due to insufficient sampling amount and inaccurate sampling location. Thus, it is necessary to develop a signature that can accurately identify patients with CRC under these clinical scenarios. Based on the relative expression orderings of genes within individual samples, we developed a qualitative transcriptional signature to discriminate CRC tissues, including CRC adjacent normal tissues from non-CRC individuals. The signature was validated using multiple microarray and RNA sequencing data from different sources. In the training data, a signature consisting of 7 gene pairs was identified. It was well validated in both biopsy and surgical resection specimens from multiple datasets measured by different platforms. For biopsy specimens, 97.6% of 42 CRC tissues and 94.5% of 163 non-CRC (normal or inflammatory bowel disease) tissues were correctly classified. For surgically resected specimens, 99.5% of 854 CRC tissues and 96.3% of 81 CRC adjacent normal tissues were correctly identified as CRC. Notably, we additionally measured 33 CRC biopsy specimens by the Affymetrix platform and 13 CRC surgical resection specimens, with different proportions of tumor epithelial cells, ranging from 40% to 100%, by the RNA sequencing platform, and all these samples were correctly identified as CRC. The signature can be used for the early diagnosis of CRC, which is also suitable for minimum biopsy specimens and inaccurately sampled specimens, and thus has potential value for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778657PMC
http://dx.doi.org/10.1111/cas.14137DOI Listing

Publication Analysis

Top Keywords

biopsy specimens
16
early diagnosis
12
crc
12
crc tissues
12
qualitative transcriptional
8
transcriptional signature
8
signature early
8
diagnosis colorectal
8
colorectal cancer
8
specimens
8

Similar Publications

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.

View Article and Find Full Text PDF

Spotty liver disease (SLD) affects free-range laying hens, leading to mortality and reduced egg production. species, including , have been associated with SLD cases worldwide. However, the cause of SLD-like lesions found in broilers in Japan still remains unclear.

View Article and Find Full Text PDF

Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species , genus , family ), the causal agent of red blotch disease, is transmitted by (Hemiptera: Membracidae) in a circulative, non-propagative mode. To gain new insight into GRBV- interactions, we delved into vertical transmission and documented a lack of transovarial transmission.

View Article and Find Full Text PDF

Homologous recombination repair deficiency (HRD) is involved in the development of high-grade serous ovarian carcinoma (HGSOC) and its elevated sensitivity to platinum-based chemotherapy. To investigate the heterogeneity of the HRD-positive HGSOC we evaluated the HRD status, including BRCA mutations, genomic scar score, and methylation status of genes in 352 HGSOC specimens. We then divided the HRD-positive cohort into three molecular subgroups, the BRCA mutation cohort (BRCA+), BRCA1 methylation cohort (Meth+), and the rest of the HRD+ cohort (HRD+BRCA-Meth-), and evaluated their first-line chemotherapy response, benefit from olaparib, and progression-free survival (PFS).

View Article and Find Full Text PDF

Endoscopic Ultrasound-Guided Pancreatic Tissue Sampling: Lesion Assessment, Needles, and Techniques.

Medicina (Kaunas)

December 2024

Department of Medicine, Diagnostic and Interventional Endoscopy of the Pancreas, The Pancreas Institute, University Hospital of Verona, 37134 Verona, Italy.

Endoscopic ultrasound (EUS)-guided tissue sampling includes the techniques of fine needle aspiration (FNA) and fine needle biopsy (FNB), and both procedures have revolutionized specimen collection from the gastrointestinal tract, especially from remote/inaccessible organs. EUS-FNB has replaced FNA as the procedure of choice for tissue acquisition in solid pancreatic lesions (SPLs) across various society guidelines. FNB specimens provide a larger histological tissue core (preserving tissue architecture) with fewer needle passes, and this is extremely relevant in today's era of precision and personalized molecular medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!