Structured light scanning is a noninvasive, accurate, and cost-effective 3D imaging technique, but due to reflection issues is yet to be utilized for tool mark analysis on fresh bone. During imaging, reflection from shiny surfaces, such as greasy bone, disrupts image formation. This study tested the David SLS-1 scanner's ability to image saw marks and explored six strategies to reduce reflection by [1] dulling the surface or [2] altering the projected light. The surface was dulled by freezing, talcum powder, dulling spray, or compressed air. The projected light was altered with a diffuser or limited to single pattern-coded. Results demonstrated that the resolution was insufficient for capturing minute details of striae. All six tests failed to reduce reflection sufficiently to produce complete images, but projecting vertical pattern-coded light showed the most promise. Future research is required concentrating on enhancing resolution and exploring the role of pattern-coded light in reducing reflection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1556-4029.14136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!