Driving Pressure Is Associated with Outcome during Assisted Ventilation in Acute Respiratory Distress Syndrome.

Anesthesiology

From the Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy (G.B., A.G., S.S., S.G., G.F.) Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy (G.B., A.G., S.S., S.G., G.F.) Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (B.P.K.) Department of Anesthesia, Critical Care and Emergency Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (A.P.).

Published: September 2019

What We Already Know About This Topic: Higher driving pressure during controlled mechanical ventilation is known to be associated with increased mortality in patients with acute respiratory distress syndrome.Whereas patients with acute respiratory distress syndrome are initially managed with controlled mechanical ventilation, as they improve, they are transitioned to assisted ventilation. Whether higher driving pressure assessed during pressure support (assisted) ventilation can be reliably assessed and whether higher driving pressure is associated with worse outcomes in patients with acute respiratory distress syndrome has not been well studied.

What This Article Tells Us That Is New: This study shows that in the majority of adult patients with acute respiratory distress syndrome, both driving pressure and respiratory system compliance can be reliably measured during pressure support (assisted) ventilation.Higher driving pressure measured during pressure support (assisted) ventilation significantly associates with increased intensive care unit mortality, whereas peak inspiratory pressure does not.Lower respiratory system compliance also significantly associates with increased intensive care unit mortality.

Background: Driving pressure, the difference between plateau pressure and positive end-expiratory pressure (PEEP), is closely associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). Although this relationship has been demonstrated during controlled mechanical ventilation, plateau pressure is often not measured during spontaneous breathing because of concerns about validity. The objective of the present study is to verify whether driving pressure and respiratory system compliance are independently associated with increased mortality during assisted ventilation (i.e., pressure support ventilation).

Methods: This is a retrospective cohort study conducted on 154 patients with ARDS in whom plateau pressure during the first three days of assisted ventilation was available. Associations between driving pressure, respiratory system compliance, and survival were assessed by univariable and multivariable analysis. In patients who underwent a computed tomography scan (n = 23) during the stage of assisted ventilation, the quantity of aerated lung was compared with respiratory system compliance measured on the same date.

Results: In contrast to controlled mechanical ventilation, plateau pressure during assisted ventilation was higher than the sum of PEEP and pressure support (peak pressure). Driving pressure was higher (11 [9-14] vs. 10 [8-11] cm H2O; P = 0.004); compliance was lower (40 [30-50] vs. 51 [42-61] ml · cm H2O; P < 0.001); and peak pressure was similar, in nonsurvivors versus survivors. Lower respiratory system compliance (odds ratio, 0.92 [0.88-0.96]) and higher driving pressure (odds ratio, 1.34 [1.12-1.61]) were each independently associated with increased risk of death. Respiratory system compliance was correlated with the aerated lung volume (n = 23, r = 0.69, P < 0.0001).

Conclusions: In patients with ARDS, plateau pressure, driving pressure, and respiratory system compliance can be measured during assisted ventilation, and both higher driving pressure and lower compliance are associated with increased mortality.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000002846DOI Listing

Publication Analysis

Top Keywords

driving pressure
52
assisted ventilation
36
respiratory system
32
system compliance
32
pressure
26
acute respiratory
24
respiratory distress
24
distress syndrome
20
higher driving
20
associated increased
20

Similar Publications

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

Evaluating the Performance Characteristics of Pressure Monitoring Systems.

Sensors (Basel)

January 2025

Skin Sensing Research Group, School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1HE, UK.

Measuring interface pressure is currently used in a variety of settings, e.g., automotive or clinical, to evaluate pressure distribution at support surface interfaces.

View Article and Find Full Text PDF

A Robust Normally Closed Pneumatic Valve for Integrated Microfluidic Flow Control.

Micromachines (Basel)

December 2024

Zepto Life Technology Inc., 1000 Westgate Drive, St. Paul, MN 55114, USA.

Accurate fluid management in microfluidic-based point-of-care testing (POCT) devices is critical. Fluids must be gated and directed in precise sequences to facilitate desired biochemical reactions and signal detection. Pneumatic valves are widely utilized for fluid gating due to their flexibility and simplicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!