Introduction: Transplantation of the keratinocytes, fibroblasts, bone marrow, and adipose tissue-derived mesenchymal stem cells may improve chronic wound healing by delivery of different cytokines, chemokines, and growth factors, which play an essential role in wound healing. The purposes of this review were to check which cell lines are potentially beneficial in enhancement of wound healing and to describe the safety and efficacy of cell therapies in the clinical treatment of chronic wounds, as well as to summarize the pertinent literature and research progress in this field.

Methods: PubMed search engine and ClinicalTrials.gov were used to analyze the available data on cell therapies applied in treatment of chronic wound. The analysis included 51 articles, assessing the use of keratinocytes (10), fibroblasts (7), keratinocytes and fibroblasts (10), bone marrow-derived cells (20), and adipose tissue cells (4). Studies on the cell-based products that are currently available on the market (Dermagraft, EpiDex, Apligraf, and HP802-247) were also included, with majority of reports found on fibroblasts and keratinocytes studies.

Results: Cell-based therapies have a great potential to improve wound healing without major surgical procedures and donor-site morbidity. There is, however, a lack of guidelines on how the age of the patients, the general health conditions, and the coexistence of different diseases may affect the success of these therapies. Further studies are needed to determine the fate of transplanted cells and the number of cells required to obtain optimal effects and outcomes.

Conclusions: Despite many promising clinical trials on application of various stem cell-based therapies for treatment of chronic wounds, there is still a need for multicenter comparative studies assessing the dose response and the cell source response on the efficacy of chronic wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000001947DOI Listing

Publication Analysis

Top Keywords

wound healing
20
cell-based therapies
12
chronic wounds
12
keratinocytes fibroblasts
12
chronic wound
12
treatment chronic
12
fibroblasts bone
8
cell therapies
8
fibroblasts keratinocytes
8
chronic
6

Similar Publications

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

FGF-based drug discovery: advances and challenges.

Nat Rev Drug Discov

January 2025

Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.

The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible.

View Article and Find Full Text PDF

TGF-beta plays dual roles in immunity and pathogenesis in leishmaniasis.

Cytokine

January 2025

Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:

Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.

View Article and Find Full Text PDF

Background: Keloid is a benign skin tumor that result from abnormal wound healing and excessive collagen deposition. The pathogenesis is believed to be linked to genetic predisposition and immune imbalance, although the precise mechanisms remain poorly understood. Current therapeutic approaches may not consistently yield satisfactory outcomes and are often accompanied by potential side effects and risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!