PD-L1 is a transmembrane glycoprotein with an extracellular as well as an intracellular cytoplasmic domain. Physiologically, it plays a pivotal role in regulating T-cell activation and tolerance. Many tumor cells have exploited this regulatory mechanism by overexpressing PD-L1 in an effort to escape immunologic surveillance. In this review, we parse the literature regarding the prognostic value of tumoral PD-L1 expression before discussing the various methodologies as well as the pearls and pitfalls associated with each for predicting response to anti-PD-1/PD-L1 therapies. Special attention is given to cutaneous entities in which PD-L1 expression has been documented with an emphasis on cutaneous malignancies that have seen the broadest applications of anti-PD-L1/PD-1 therapies. Currently, immunohistochemistry is the method that is most commonly used for detection of PD-L1. However, with the wide array of immunohistochemistry protocols and staining platforms available in the market, there seems to be different cutoffs not just for different entities but also for the same entity. This review is an attempt to address the need for standardization and validation of existing protocols for PD-L1 detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/DAD.0000000000001287 | DOI Listing |
Popul Health Metr
December 2024
Bioinformatics Group, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
Seasonal variations in the environment induce observable changes in the human physiological system and manifest as various clinical symptoms in a specific human population. Our earlier studies predicted four global severe seasonal sensitive comorbid lifestyle diseases (SCLDs), namely, asthma, obesity, hypertension, and fibrosis. Our studies further indicated that the SCLD category of the human population may be maladapted or unacclimatized to seasonal changes.
View Article and Find Full Text PDFAm J Emerg Med
December 2024
British Medical Association, BMA House, Tavistock Square, London WC1 H 9JP, United Kingdom. Electronic address:
Biosens Bioelectron
December 2024
Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
The loss of olfactory function has a profound impact on quality of life, affecting not only sensory perception but also memory, emotion, and overall well-being. Despite this, advancements in olfactory prostheses have lagged significantly behind those made for vision and hearing restoration. This review offers a comprehensive analysis of the current state of devices for electrical stimulation of the olfactory system.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa, JPN.
Brain Commun
November 2024
Department of Clinical Sciences, Diagnostic Radiology, Medical Faculty, Lund University, 221 85 Lund, Sweden.
Non-invasive evaluation of glymphatic function has emerged as a crucial goal in neuroimaging, and diffusion tensor imaging along the perivascular space (DTI-ALPS) has emerged as a candidate method for this purpose. Reduced ALPS index has been suggested to indicate impaired glymphatic function. However, the potential impact of crossing fibres on the ALPS index has not been assessed, which was the aim of this cross-sectional study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!