This letter presents an electrochemical methodology for structure-tunable synthesis, characterization, and kinetic monitoring of metal-semiconductor phase transformations at individual Ag nanoparticles. In the presence of HS in aqueous solution, the stochastic collision and adsorption of Ag nanoparticles at a Au microelectrode initiates the partial anodic transformation of Ag to AgS at each particle. A single continuous current transient is observed for each Ag nanoparticle reacted. The characteristic shapes of the transients are distinct from previously reported amperometric recordings of electrochemical reactions involving single nanoparticles and are highly uniform at a constant applied potential. The average maximum current increases while the event duration decreases as a function of increasing potential. Independent of applied potential, the electrochemical transformation event abruptly stops after converting ∼80% of the Ag in the nanoparticle to AgS, a self-terminating process that does not occur for bulk Ag electrodes under similar conditions. The resulting products are a mixture of core@shell Ag@AgS nanoparticles with and without voids in the core, as characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Both the frequency and size of voids increase at more positive potentials. The average size of the core@shell nanoparticles determined by coulometric analysis of the current transients agrees well with TEM measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b02144 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!