NiPS nanoflakes: a nonlinear optical material for ultrafast photonics.

Nanoscale

Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China.

Published: August 2019

Ultrafast photonics based on two-dimensional (2D) materials has been used to investigate light-matter interactions and laser generation, as well as light propagation, modulation, and detection. Here, 2D metal-phosphorus trichalcogenides, which are known for applications in catalysis and electrochemical storage, also exhibit advantageous photonic properties as nanoflakes that are only a few layers thick. By using an open-aperture Z-scan system, few-layer NiPS3 nanoflakes exhibited a large modulation depth of 56% and a low saturable intensity of 16 GW cm-2 at 800 nm. When NiPS3 nanoflakes were used as a saturable absorber at 1066 nm, highly stable mode-locked pulses were generated. Thus, these results revealed the nonlinear optical properties of NiPS3 nanoflakes which have potential photonics applications, such as modulators, switches, and thresholding devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr03964cDOI Listing

Publication Analysis

Top Keywords

nips3 nanoflakes
12
nonlinear optical
8
ultrafast photonics
8
nips nanoflakes
4
nanoflakes nonlinear
4
optical material
4
material ultrafast
4
photonics ultrafast
4
photonics based
4
based two-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!