The dissolved metal adsorption and association was determined for ten different filter materials recommended and/or implemented in bioretention facilities. Batch adsorption and batch kinetic experiments were performed at lab-scale using both single and multi-metal solutions. Metal strengths and association were determined by sequential extraction analysis. All materials adsorbed metals and 90% of adsorption occurred within 1 h. However, as metal solutions became more complex, adsorption behavior changed. Generally, filter materials classified as sand with a naturally high pH, relatively low organic matter (OM) content and large specific surface area seem to be good choices for removing dissolved metals. Additionally, a chalk additive might improve metal adsorption whereas biochar did not significantly improve metal retention and may be an unwanted (due to degradation over time) extra source of OM. Regardless of filter material, metals primarily adsorbed to the exchangeable form which indicates that metal adsorption might not be permanent, but rather substantially reversible in some cases. More research is needed to assess whether dissolved metals adsorbed in filter materials of bioretention systems pose a delayed threat instead of an immediate threat. Finally, the authors strongly recommend filter materials intended for stormwater bioretention facilities to be tested prior to implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614605 | PMC |
http://dx.doi.org/10.1016/j.wroa.2019.100032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!