Tyrosol is extensively used in the pharmaceutical industry as an important natural product from plants. In this study, an exogenous pathway involved in catalyzing tyrosine to tyrosol was introduced into . Furthermore, The pyruvate decarboxylase gene was deleted to redirect the flux distribution at the pyruvate node, and a bifunctional NAD-dependent fused chorismate mutase/prephenate dehydrogenase from (TyrA) and its' tyrosine inhibition resistant mutant (TyrA) were heterologously expression in to tuning up the chorismate metabolism effectively directed the metabolic flux toward tyrosol production. Finally, the tyrosol yield of the engineered strain GFT-4 was improved to 126.74 ± 6.70 mg/g DCW at 48 h, increased 440 times compared with that of the control strain GFT-0 (0.28 ± 0.01 mg/g DCW). The new synergetic engineering strategy developed in this study can be further applied to increase the production of high value-added aromatic compounds derived from aromatic amino acid or shikimate in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616077 | PMC |
http://dx.doi.org/10.3389/fbioe.2019.00152 | DOI Listing |
Antioxidants (Basel)
December 2024
Department of Biotechnology, University of Verona, 37134 Verona, Italy.
Olive phenolic compounds like hydroxytyrosol (OH-Tyr), tyrosol (Tyr), and their precursors have different health-promoting properties, mainly based on their strong antioxidant capacity. However, their presence in extra-virgin olive oil (EVOO) is scarce since they are primarily contained in the by-products of oil production, such as olive pomace (OP). The aim of this work was to extract and encapsulate OP phenolic compounds into chitosan-tripolyphosphate nanoparticles (NPs) using an ionotropic gelation lyophilization approach to increase their resistance to environmental and chemical stress.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
Given the widespread industrial and domestic use of probiotic blends based on combinations of lactic acid bacteria (LAB) and yeasts to produce fermented foods or beverages that are supposed to provide health benefits, this study aimed to generate knowledge and concepts on biologically relevant activities, metabolism and metabolic interactions in yeast/LAB communities. For this, the postbiotic capabilities of three probiotic candidates, including two lactic acid bacteria (i.e.
View Article and Find Full Text PDFJ Biotechnol
December 2024
Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China. Electronic address:
Food Sci Nutr
December 2024
Food Biotechnology Department, Instituto de la Grasa (CSIC) Campus Universitario Pablo de Olavide Seville Spain.
The process of biofilm formation during table olive fermentation is crucial to turning this fermented vegetable into a probiotic food. Some phenolic compounds have been described as important quorum-sensing molecules during biofilm development. The present in vitro study examined the effects of three phenolic compounds widely found in table olive fermentations (Oleuropein 0-3000 ppm, Hydroxytyrosol 0-3000 ppm, and Tyrosol 0-300 ppm) on the development of single biofilm by diverse microorganisms isolated from table olives ( 13B4, Lp119, and LPG1; Lp15 and LAB23; and yeasts Y12, Y13, and Y18).
View Article and Find Full Text PDFSynth Syst Biotechnol
November 2024
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
Tyrosol is an important component of pharmaceuticals, nutraceuticals, and cosmetics, and their biosynthetic pathways are currently a hot research topic. d-Erythrose 4-phosphate is a key precursor for the biosynthesis of tyrosol in . Hence, the flux of d-Erythrose 4-phosphate determined the yield of tyrosol synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!