Melanoma and squamous cell carcinoma of the skin are characterized by an altered glucose metabolism, but little is known about metabolic changes in precancerous skin lesions such as actinic keratosis (AK). Here, we studied the central carbon metabolism and immune cell infiltrate of actinic keratosis lesions before, under, and 4 weeks after treatment with topical diclofenac (Solaraze®). This study was designed as a prospective, randomized, controlled, monocentric investigation (ClinicalTrials.gov Identifier: NCT01935531). Myeloid and T cell infiltration was analyzed in skin biopsies from 28 patients by immunohistochemistry. Furthermore, immune cell activation was determined via quantitative real-time PCR (γ, IL-10, β). Glucose, amino acid and Krebs' cycle metabolism was studied by mass spectrometry prior, during and after treatment with topical diclofenac. Biopsies from sun-exposed, untreated, healthy skin served as controls. Increased lactate and decreased glucose levels suggested accelerated glycolysis in pre-treatment AK. Further, levels of Krebs' cycle intermediates other than citrate and amino acids were elevated. Analysis of the immune infiltrate revealed less epidermal CD1a+ cells but increased frequencies of dermal CD8+ T cells in AK. Treatment with diclofenac reduced lactate and amino acid levels in AK, especially in responding lesions, and induced an infiltration of dermal CD8+ T cells accompanied by high γ mRNA expression, suggesting improved T cell function. Our study clearly demonstrated that not only cancers but also pre-malignant skin lesions, like AK, exhibit profound changes in metabolism, correlating with an altered immune infiltrate. Diclofenac normalizes metabolism, immune cell infiltration and function in AK lesions, suggesting a novel mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619385PMC
http://dx.doi.org/10.3389/fonc.2019.00605DOI Listing

Publication Analysis

Top Keywords

immune cell
16
topical diclofenac
12
metabolism immune
12
cell infiltration
12
actinic keratosis
12
skin lesions
8
treatment topical
8
amino acid
8
krebs' cycle
8
immune infiltrate
8

Similar Publications

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection.

View Article and Find Full Text PDF

A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.

View Article and Find Full Text PDF

Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions.

Cell Rep

January 2025

Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA. Electronic address:

Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors.

View Article and Find Full Text PDF

Protocol for identifying Dicer as dsRNA binding and cleaving reagent in response to transfected dsRNA.

STAR Protoc

January 2025

CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Electronic address:

Mammalian Dicer has been proved to be functional on double-stranded RNAs (dsRNAs) and involved in antiviral immunity or immune regulation. Here, we present a protocol for identifying Dicer as a dsRNA binding and cleaving factor to transfected dsRNA in cell lines, based on small RNA sequencing (RNA-seq) and dsRNA-immunoprecipitation (dsRNA-IP). We detail both experimental processes and analysis on small RNA-seq data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!