Pan-Genomic and Polymorphic Driven Prediction of Antibiotic Resistance in .

Front Microbiol

Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK, United States.

Published: July 2019

The are a genetically diverse genus of emerging pathogens that exhibit multidrug resistance to a range of common antibiotics. Two representative species, and , were phenotypically tested to determine minimum inhibitory concentrations (MICs) for five antibiotics. Ultra-long read sequencing with Oxford Nanopore Technologies (ONT) and subsequent assembly produced complete, gapless circular genomes for each strain. Alignment based annotation with Prokka identified 5,480 features in and 5,203 features in , where none of these identified genes or gene combinations corresponded to observed phenotypic resistance values. Pan-genomic analysis, performed with an additional 19 strains, identified a core-genome size of 2,658,537 bp, 32 uniquely identifiable intrinsic chromosomal antibiotic resistance core-genes and 77 antibiotic resistance pan-genes. Using core-SNPs and pan-genes in combination with six machine learning (ML) algorithms, binary classification of clindamycin and vancomycin resistance achieved f1 scores of 0.94 and 0.84, respectively. Performance on the more challenging multiclass problem for fusidic acid, rifampin and ciprofloxacin resulted in f1 scores of 0.70, 0.75, and 0.54, respectively. By producing two sets of quality biological predictors, pan-genome genes and core-genome SNPs, from long-read sequence data and applying an ensemble of ML techniques, our results demonstrated that accurate phenotypic inference, at multiple AMR resolutions, can be achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622151PMC
http://dx.doi.org/10.3389/fmicb.2019.01446DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
12
resistance
6
pan-genomic polymorphic
4
polymorphic driven
4
driven prediction
4
prediction antibiotic
4
resistance genetically
4
genetically diverse
4
diverse genus
4
genus emerging
4

Similar Publications

The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.

View Article and Find Full Text PDF

Despite significant global reductions in cases of pneumonia during the last 3 decades, pneumonia remains the leading cause of post-neonatal mortality in children aged <5 years. Beyond the immediate disease burden it imposes, pneumonia contributes to long-term morbidity, including lung function deficits and bronchiectasis. Viruses are the most common cause of childhood pneumonia, but bacteria also play a crucial role.

View Article and Find Full Text PDF

The spread of NDM-1-harboring Klebsiella pneumoniae is a worldwide concern. In this study the whole-genome sequence (WGS) of a carbapenem- and colistin-resistant K. pneumoniae 838Gr strain is presented.

View Article and Find Full Text PDF

Monitoring molecular markers associated with antimalarial drug resistance in south-east Senegal from 2021 to 2023.

J Antimicrob Chemother

January 2025

Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.

Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.

Objective: To assess the proportion of P.

View Article and Find Full Text PDF

Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of serotypes isolated from necropsied horses in Kentucky.

Microbiol Spectr

January 2025

Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, USA.

Unlabelled: is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. infections in horses can be either asymptomatic or cause severe clinical illness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!