The Journey of Thiazolidinediones as Modulators of PPARs for the Management of Diabetes: A Current Perspective.

Curr Pharm Des

Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia.

Published: April 2020

Peroxisome Proliferator-Activated Receptors (PPARs) also known as glitazone receptors are a family of receptors that regulate the expression of genes and have an essential role in carbohydrate, lipid and protein metabolism apart from other functions. PPARs come in 3 sub-types: PPAR-α, PPAR-β/δ and PPAR-γ - with PPAR-γ having 2 isoforms - γ1 and γ2. Upon activation, the PPARs regulate the transcription of various genes involved in lipid and glucose metabolism, adipocyte differentiation, increasing insulin sensitivity, prevention of oxidative stress and to a certain extent, modulation of immune responses via macrophages that have been implicated in the pathogenesis of insulin resistance. Hence, PPARs are an attractive molecular target for designing new anti-diabetic drugs. This has led to a boost in the research efforts directed towards designing of PPAR ligands - particularly ones that can selectively and specifically activate one or more of the PPAR subtypes. Though, PPAR- γ full agonists such as Thiazolidinediones (TZDs) are well established agents for dyslipidemia and type 2 diabetes mellitus (T2D), the side effect profile associated with TZDs has potentiated an imminent need to come up with newer agents that act through this pathway. Several newer derivatives having TZD scaffold have been designed using structure based drug designing technique and computational tools and tested for their PPAR binding affinity and efficacy in combating T2D and some have shown promising activities. This review would focus on the role of PPARs in the management of T2D; recently reported TZD derivatives which acted as agonists of PPAR- γ and its subtypes and are potentially useful in the new drug discovery for the disease.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612825666190716094852DOI Listing

Publication Analysis

Top Keywords

ppars management
8
ppars
6
journey thiazolidinediones
4
thiazolidinediones modulators
4
modulators ppars
4
management diabetes
4
diabetes current
4
current perspective
4
perspective peroxisome
4
peroxisome proliferator-activated
4

Similar Publications

A large body of evidence has shown that modulation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs), the proprotein convertase subtilisin/kexin type 9 (PCSK9) and inflammatory processes by natural compounds has hypolipidemic and anti-atherosclerotic effects. These beneficial outcomes are certainly related to the crucial function of these targets in maintaining cholesterol homeostasis and regulating systemic inflammation. Currently, the therapeutic scenario for cardiovascular diseases (CVD) offers a plethora of widely validated and functional pharmacological treatments to improve the health status of patients.

View Article and Find Full Text PDF

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

A Review of Bavachinin and Its Derivatives as Multi-therapeutic Agents.

Chem Biodivers

January 2025

Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.

Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.

View Article and Find Full Text PDF

Neuropathic pain poses a significant clinical challenge, largely due to the incomplete understanding of its molecular mechanisms, particularly the role of mitochondrial dysfunction. Bioinformatics analysis revealed that pyroptosis and inflammatory responses induced by spared nerve injury (SNI) in the spinal dorsal horn play a critical role in the initiation and persistence of neuropathic pain. Among the factors involved, TSPO (translocator protein) emerged as a key regulator.

View Article and Find Full Text PDF

The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game.

Molecules

January 2025

Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.

The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!