Background: Adenosine receptors (ARs) are classified as A1, A2A, A2B, and A3 subtypes belong to the superfamily of G-protein coupled receptors (GPCRs). More than 40% of modern medicines act through either activation or inhibition of signaling processes associated with GPCRs. In particular, A2B AR signaling pathways are implicated in asthma, inflammation, cancer, ischemic hyperfusion, diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, and kidney disease.

Methods: This article reviews different disease segments wherein A2B AR is implicated and discusses the potential role of subtype-selective A2B AR ligands in the management of such diseases or disorders. All the relevant publications on this topic are reviewed and presented scientifically.

Results: This review provides an up-to-date highlight of the recent advances in the development of novel and selective A2B AR ligands and their therapeutic role in treating various disease conditions. A special focus has been given to the therapeutic potentials of selective A2B AR ligands in the management of airway inflammatory conditions and cancer.

Conclusions: This systematic review demonstrates the current status and perspectives of A2B AR ligands as therapeutically useful agents that would assist medicinal chemists and pharmacologists in discovering novel and subtype-selective A2B AR ligands as potential drug candidates.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612825666190717105834DOI Listing

Publication Analysis

Top Keywords

a2b ligands
20
a2b
9
therapeutic potentials
8
current status
8
status perspectives
8
subtype-selective a2b
8
ligands management
8
selective a2b
8
ligands
6
potentials a2b
4

Similar Publications

Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity relationships (SAR) to derive models that describe the selectivity and activity of inhibitors targeting Adenosine receptors. Structural information for 16,312 inhibitors was collected from BindingDB and analyzed using machine learning methods.

View Article and Find Full Text PDF

Bidentate [C,N] and Tridentate [C,N,S] Palladium Cyclometallated Complexes as Pre-Catalysts in Cross-Coupling Reactions.

ChemistryOpen

November 2024

Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-, 15782, Santiago de Compostela, Spain.

Article Synopsis
  • The study focuses on the synthesis of palladacycles (both dinuclear and mononuclear) using halide-substituted Schiff base ligands, which involve C-H activation when treated with palladium(II) compounds.
  • Dinuclear complexes formed through metathesis with sodium chloride are converted into μ-chloride dinuclear complexes, which then react with phosphines to yield various phosphine derivatives.
  • The synthesized compounds were characterized using techniques like microanalysis, spectroscopy, and X-ray diffraction, and their efficacy as pre-catalysts in the Suzuki-Miyaura cross-coupling reaction was evaluated, highlighting the best-performing complexes.
View Article and Find Full Text PDF

Supramolecular interactions between polymers play a crucial role in the construction of three-dimensional polymer structures with unique physical and chemical properties. In this study, we have fabricated a novel supramolecular miktoarm star copolymer (μ-star) with a cobalt(II) phthalocyanine (CoPc) core using metal-ligand coordination. Axial coordination of the terminal pyridyl group of poly(methyl methacrylate) with the CoPc core of four-armed star-shaped polystyrene provided AB- and AB-type μ-stars through stepwise complexation.

View Article and Find Full Text PDF

8-Aminopurines: A Promising New Direction for Purine-Based Therapeutics.

Hypertension

December 2024

Department of Pharmacology and Chemical Biology (E.K.J., S.P.T., Y.C., L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, PA.

Research in purinergic pharmacology has yielded major advances in cardiovascular therapeutics such as adenosine for terminating atrioventricular reentrant tachycardia, regadenoson for pharmacological ischemic stress testing, and selective P2Y receptor antagonists for prevention of stroke and myocardial infarction. Mechanistically, these FDA-approved purine-based therapeutics activate or antagonize receptors having endogenous ligands containing the purine nucleobase adenine. Recent discoveries suggest a novel direction for purine-based therapeutics.

View Article and Find Full Text PDF

Reaction of lanthanoid tris(3,5-dimethylpyrazolate) compounds, [Ln(Mepz)(thf)] (Ln=La 1 a, Ce, Pr, Dy 1 b, Yb, Lu) with potassium or lithium bistrimethylsilylamide and with or without added 3,5-dimethylpyrazole, or of lanthanoid tris(bistrimethylsilyl)amide complexes with potassium bistrimethylsilylamide and 3,5-dimethylpyrazole have yielded a variety of oxide centred Ln or Ln/(K or Li) multinuclear cages, namely, [LaO(Mepz) K(thf)] (2 a), [LaO(Mepz)Li(MepzH)]⋅0.5Hexane (2 b), [LaO(Mepz)(MepzH)] (2 c) (from heating 1 a in toluene), [CeO(Mepz)K(dme)] (3 a), [CeO(Mepz)Li(thf)]⋅0.5Hexane (3 b) and [Ce(Mepz)Li(thf)] (3 c), which crystallized together, [CeO(Mepz)K(thf)] (3 d), [PrO(Mepz)K(thf)] (4), [DyO(Mepz)K(thf)]⋅THF (5), [YbO(Mepz)K(thf)]⋅THF (6), and [LuO(Mepz)K(thf)]⋅THF (7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!