Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemoselective protein labeling is a valuable tool in the arsenal of modern chemical biology. The unnatural amino acid mutagenesis technology provides a powerful way to site-specifically introduce nonnatural chemical functionalities into recombinant proteins, which can be subsequently functionalized in a chemoselective manner. Even though several strategies currently exist to selectively label recombinant proteins in this manner, there is considerable interest for the development of additional chemoselective reactions that are fast, catalyst-free, use readily available reagents, and are compatible with existing conjugation chemistries. Here we describe a method to express recombinant proteins in E. coli site-specifically incorporating 5-hydroxytryptophan, followed by the chemoselective labeling of this residue using a chemoselective rapid azo-coupling reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9654-4_16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!