Selenium (Se) is important in many physiological processes, such as antioxidant processes and inflammation. The aim of our experiments was to investigate the molecular mechanism that selenomethionine could reduce the lipopolysaccharide (LPS)-induced inflammation by inhibiting the TLR4-NF-κB-NLRP3 signaling pathway. Eighty broilers were randomly and evenly divided into two groups, giving normal Se content diets (Con group, 0.2 mg Se/kg diet) and Se-rich basal diets (Se group, 0.5 mg selenomethionine/kg diet) for 90 days. Se-rich basal diets were based on 0.2 mg/kg sodium selenite contained. Five hours before euthanized, 20 broilers were randomly selected from each group and given lipopolysaccharide (200 μg/kg BW) by intraperitoneal injection, Con+LPS group and Se+LPS group, respectively. The Con group and Se group were given equal saline by intraperitoneal injection. We observed the microscopic pathological changes of liver tissue detected oxidative stress by kit and detected the expression of inflammatory factors, heat shock protein (HSP), and nod-like receptor protein 3 (NLRP3)-related genes by qRT-PCR and Western blot. With the microscope, we found the Con+LPS group had obvious inflammatory lesions such as sinusoidal congestion, but the damage was significantly alleviated in the Se+LPS group. In the Con+LPS group, the activity of GSH-Px and the content of GSH were significantly decreased compared with those in the Con group; however, they are increased in the Se group and in the Se + LPS group. Inflammatory factors (MyD88, NF-κB, TNF-α, IL-1β, IL-6, IL-12, IL-18, iNOS, and COX-2), heat shock proteins (HSP27, HSP60, HSP70, and HSP90), and the expression of NLRP3 and caspase-1 increased in the Con+LPS group compared with those in the Con group, while they were lower in the Se+LPS group than in the Con+LPS group. We concluded that selenomethionine inhibits the LPS-induced inflammation of liver tissue via suppressing the TLR4-NF-κB-NLRP3 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-019-01841-0DOI Listing

Publication Analysis

Top Keywords

con+lps group
20
group
17
con group
16
liver tissue
12
tlr4-nf-κb-nlrp3 signaling
12
signaling pathway
12
se+lps group
12
lps-induced inflammation
8
broilers randomly
8
se-rich basal
8

Similar Publications

The aim of this study was to investigate the effects of terpinen-4-ol (TER) supplementation on the intestinal barrier function of pigs. Five groups of fifty 28-day-old piglets with comparable body weights were randomly assigned to the following groups: the control group (CON), the lipopolysaccharide group (LPS), the low TER group (PLT), the middle TER group (PMT), and the high TER group (PHT). The basal diet was given to the CON and LPS groups, and 30, 60, or 90 mg/kg TER was added to the basal diet for the TER groups.

View Article and Find Full Text PDF

Effects of Dietary Gallic Acid on Growth Performance, Meat Quality, Antioxidant Capacity, and Muscle Fiber Type-Related Gene Expression in Broiler Chickens Challenged with Lipopolysaccharide.

Animals (Basel)

December 2024

Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.

In this study, broilers were selected as the research object to investigate the effects and mechanisms of dietary gallic acid (GA) supplementation on growth performance, meat quality, antioxidant capacity, and muscle fiber-related gene expression. A total of 750 one-day-old healthy 817 male crossbred broiler chickens were divided into five treatment groups, with six replicates per group. Birds in the control (CON) group and LPS-challenged treatment (LPS) group were fed a basal diet, and birds in the other three treatment groups received the basal diet with 150, 300, or 450 mg/kg added GA (GA150, GA300, GA450).

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Bile acids alleviate intestinal inflammation by modulating gut microbiota composition in LPS-challenged broilers.

Res Vet Sci

December 2024

Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Previous research has identified bile acids (BAs) as a valuable supplement for animal feed, especially in the poultry industry. However, there is limited research on the use of bile acids as a preventative measure against intestinal inflammation in broilers. This study aims to investigate the impact of dietary BAs on LPS-triggered intestinal inflammation in broilers.

View Article and Find Full Text PDF

Regulation of lactate accumulation in bovine mammary epithelial cells by LPS-induced HIF-1α/MCT1 pathway.

Microb Pathog

December 2024

Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China. Electronic address:

Lactate has been increasingly recognized for its role in diseases progression, necessitating a deeper understanding of its metabolic processes and regulatory mechanisms. This study aimed to evaluate the impact of lipopolysaccharide (LPS) on lactate accumulation in bovine mammary epithelial cells (BMECs) and to elucidate the underlying regulatory mechanisms. Further optimization of LPS treatment points was achieved by assessing the content of key glycolytic enzymes-hexokinases (HK), pyruvate kinase (PK) and pyruvate dehydrogenase (PDH)-as well as the expression levels of HK2, pyruvate dehydrogenase kinase4 (PDK4) and lactate dehydrogenase (LDHA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!