Stomatal movements are regulated by many environmental signals, such as light, CO, temperature, humidity, and drought. Recently, we showed that photoperiodic flowering components have positive effects on light-induced stomatal opening in Arabidopsis thaliana. In this study, we determined that light-induced stomatal opening and increased stomatal conductance were larger in plants grown under long-day (LD) conditions than in those grown under short-day (SD) conditions. Gene expression analyses using purified guard cell protoplasts revealed that FT and SOC1 expression levels were significantly increased under LD conditions. Interestingly, the enhancement of light-induced stomatal opening and increased SOC1 expression in guard cells due to LD conditions persisted for at least 1 week after plants were transferred to SD conditions. We then investigated histone modification using chromatin immunoprecipitation-PCR, and observed increased trimethylation of lysine 4 on histone 3 (H3K4) around SOC1. We also found that LD-dependent enhancement of light-induced stomatal opening and H3K4 trimethylation in SOC1 were suppressed in the ft-2 mutant. These results indicate that photoperiod is an important environmental cue regulating stomatal opening, and that LD conditions enhance light-induced stomatal opening and epigenetic modification (H3K4 trimethylation) around SOC1, a positive regulator of stomatal opening, in an FT-dependent manner. Thus, this study provides novel insights into stomatal responses to photoperiod.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646381PMC
http://dx.doi.org/10.1038/s41598-019-46440-0DOI Listing

Publication Analysis

Top Keywords

stomatal opening
32
light-induced stomatal
20
stomatal
10
opening
8
histone modification
8
arabidopsis thaliana
8
opening increased
8
soc1 expression
8
enhancement light-induced
8
h3k4 trimethylation
8

Similar Publications

Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.

View Article and Find Full Text PDF

Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.

View Article and Find Full Text PDF

Comprehensive Identification of Gene Family in Oliv. and Functional Analysis of in Drought Tolerance.

Int J Mol Sci

January 2025

Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.

The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!