Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To determine the mechanism of action of third-generation methylenecyclopropane nucleoside analogs (MCPNAs), DNA sequencing of herpes simplex virus 1 (HSV-1) isolates resistant to third-generation MCPNAs resulted in the discovery of G841S and N815S mutations in HSV-1 UL30. Purified HSV-1 UL30 or human cytomegalovirus (HCMV) UL54 was then subjected to increasing concentrations of MBX-2168-triphosphate (TP), with results demonstrating a 50% inhibitory concentration (IC) of ∼200 μM, indicating that MBX-2168-TP does not inhibit the viral DNA polymerase. Further metabolic studies showed the removal of a moiety on the guanine ring of MBX-2168. Therefore, we hypothesized that enzymatic removal of a moiety at the 6-position of the guanine ring of third-generation MCPNAs is an essential step in activation. To test this hypothesis, pentostatin (deoxycoformycin [dCF]), an adenosine deaminase-like protein 1 (ADAL-1) inhibitor, was coincubated with MBX-2168. The results showed that dCF antagonized the effect of MBX-2168, with a >40-fold increase in the 50% effective concentration (EC) at 50 μM dCF (EC of 63.1 ± 8.7 μM), compared with MBX-2168 alone (EC of 0.2 ± 0.1 μM). Purified ADAL-1 demonstrated time-dependent removal of the moiety on the guanine ring of MBX-2168-monophosphate (MP), with a of 17.5 ± 2.4 μM and a of 0.12 ± 0.04 nmol min Finally, synguanol-TP demonstrated concentration-dependent inhibition of HSV-1 UL30 and HCMV UL54, with ICs of 0.33 ± 0.16 and 0.38 ± 0.11 μM, respectively. We conclude that ADAL-1 is the enzyme responsible for removing the moiety from the guanine ring of MBX-2168-MP prior to conversion to a TP, the active compound that inhibits the viral DNA polymerase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761536 | PMC |
http://dx.doi.org/10.1128/AAC.01301-19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!