Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm () and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing , , and isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689943PMC
http://dx.doi.org/10.1073/pnas.1908748116DOI Listing

Publication Analysis

Top Keywords

plant defenses
8
insect digestive
8
fall armyworm
8
gut bacteria
8
insect
5
gut
5
defenses
5
plant
4
defenses interact
4
interact insect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!