Accurate prediction of disease trajectories is critical for early identification and timely treatment of patients at risk. Conventional methods in survival analysis are often constrained by strong parametric assumptions and limited in their ability to learn from high-dimensional data. This paper develops a novel convolutional approach that addresses the drawbacks of both traditional statistical approaches as well as recent neural network models for survival. We present Match-Net: a missingness-aware temporal convolutional hitting-time network, designed to capture temporal dependencies and heterogeneous interactions in covariate trajectories and patterns of missingness. To the best of our knowledge, this is the first investigation of temporal convolutions in the context of dynamic prediction for personalized risk prognosis. Using real-world data from the Alzheimer's disease neuroimaging initiative, we demonstrate state-of-the-art performance without making any assumptions regarding underlying longitudinal or time-to-event processes-attesting to the model's potential utility in clinical decision support.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2019.2929264DOI Listing

Publication Analysis

Top Keywords

dynamic prediction
8
survival analysis
8
temporal convolutional
8
prediction clinical
4
clinical survival
4
temporal
4
analysis temporal
4
convolutional networks
4
networks accurate
4
accurate prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!