Low-Complexity Time-Domain Ranging Algorithm with FMCW Sensors.

Sensors (Basel)

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Published: July 2019

A time-domain ranging algorithm is proposed for a frequency-modulated continuous wave (FMCW) short-range radar sensor with high accuracy and low complexity. The proposed algorithm estimates the distance by calculating the ratio of the beat frequency signal to its derivative and thereby eliminates the restriction of frequency bandwidth on ranging accuracy. Meanwhile, we provide error analysis of the proposed algorithm under different distances, integral lengths, relative velocities, and signal-to-noise ratios (SNRs). Finally, we fabricate FMCW sensor prototype and construct a measurement system. Testing results demonstrate that the proposed time-domain algorithm could achieve range error within 0.8 m. Compared with the conventional fast Fourier transform (FFT) estimation scheme, the proposed method performs ranging without the requirement of complex multiplications, which makes it reasonable to be implemented in real-time and low-cost systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679248PMC
http://dx.doi.org/10.3390/s19143176DOI Listing

Publication Analysis

Top Keywords

time-domain ranging
8
ranging algorithm
8
proposed algorithm
8
algorithm
5
proposed
5
low-complexity time-domain
4
ranging
4
algorithm fmcw
4
fmcw sensors
4
sensors time-domain
4

Similar Publications

In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).

View Article and Find Full Text PDF

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a highly efficient TiO meta-atom-based near-infrared disordered metalens inspired by bird's eye hyperuniform distribution, analyzed using the finite-difference time-domain method.
  • The disordered metalens demonstrates a remarkable focusing efficiency of 84.39% at 820 nm, showing it can produce images similarly to traditional ordered structures.
  • The findings suggest potential applications in advanced imaging, sensing, and spectroscopic technologies, including lidar, medical devices, and holography, due to comparable optical properties with periodic metalens structures across a wavelength range of 770 to 970 nm.
View Article and Find Full Text PDF

In this paper, we propose and theoretically investigate a novel multimode refractive index (MMRI) plasmonic optical sensor for detecting various brain cancer cells, leveraging the unique capabilities of split ring resonators (SRRs). The sensor, simulated using the finite-difference time-domain (FDTD) method, exhibits dual resonance modes in its reflection spectrum within the 1500 nm to 3500 nm wavelength range, marking a significant advancement in multimode plasmonic biosensing. Through detailed parametric analysis, we optimize critical dimensional parameters to achieve superior performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!