Individual biological oscillators can synchronize to generate a collective rhythm. During vertebrate development, mobile cells exchange signals to synchronize a rhythmic pattern generator that makes the embryonic segments. Previous theoretical works have shown that cell mobility can enhance synchronization of coupled oscillators when signal exchange is instantaneous. However, in vertebrate segmentation, the exchange of signals is thought to comprise delays from signal sending and processing, which could alter the effect of mobility on synchronization. Here, we study synchronization dynamics of mobile phase oscillators in the presence of coupling delays. We find that mobility can speed up synchronization when coupling delays are present. We derive an analytical expression for the characteristic time of synchronization dynamics, which is in very good agreement with numerical simulations. This analytical expression suggests a subdivision of the mobility range into different dynamical regimes and reveals that, with delayed coupling, synchronization is enhanced at a lower mobility rate than with instantaneous coupling. We argue that these results may be relevant to the synchronization of mobile oscillators in vertebrate segmentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.062207 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
The pollutants after were discharged into the water can gradually degrade through the self-purification. The oxygen consumption and pollutant degradation rates characterize the self-purification of small and medium-sized streams, while the dynamics of the two characteristics for large rivers has not been reported yet. The in-situ investigation for 297 sites in the 1700 km stream of the Yangtze River was conducted.
View Article and Find Full Text PDFFront Netw Physiol
January 2025
Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany.
All cells in the human body, including cancer cells, possess specific electrical properties crucial for their functions. These properties are notably different between normal and cancerous cells. Cancer cells are characterized by autonomous oscillations and damped electromagnetic field (EMF) activation.
View Article and Find Full Text PDFAcetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .
View Article and Find Full Text PDFNeurosci Res
January 2025
RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:
In mammals, lactation is essential for the health and growth of infants and supports the formation of the mother-infant bond. Breastfeeding is mediated by the neurohormone oxytocin (OT), which is released into the bloodstream in a pulsatile manner from OT neurons in the hypothalamus to promote milk ejection into mammary ducts. While classical studies using anesthetized rats have illuminated the activity patterns of putative OT neurons during breastfeeding, the molecular, cellular, and neural circuit mechanisms driving the synchronous pulsatile bursts of OT neurons in response to nipple stimulation remain largely elusive.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai- cho, Nada, Kobe, 657-8501 Japan.
Unlabelled: The integration of auditory and visual stimuli is essential for effective language processing and social perception. The present study aimed to elucidate the mechanisms underlying audio-visual (A-V) integration by investigating the temporal dynamics of multisensory regions in the human brain. Specifically, we evaluated inter-trial coherence (ITC), a neural index indicative of phase resetting, through scalp electroencephalography (EEG) while participants performed a temporal-order judgment task that involved auditory (beep, A) and visual (flash, V) stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!