Within the phase-field framework, we present an accurate and robust lattice Boltzmann (LB) method for simulating contact-line motion of immiscible binary fluids on the solid substrate. The most striking advantage of this method lies in that it enables us to handle two-phase flows with mass conservation and a high density contrast of 1000, which is often unavailable in the existing multiphase LB models. To simulate binary fluid flows, the present method utilizes two LB evolution equations, which are respectively used to solve the conservative Allen-Cahn equation for interface capturing, and the incompressible Navier-Stokes equations for hydrodynamic properties. Besides, to account for the substrate wettability, two popular contact angle models including the cubic surface-energy model and the geometrical one are incorporated into the present method, and their performances are numerically evaluated over a wide range of contact angles. The contact-angle hysteresis effect, which is inherent to a rough or chemically inhomogeneous substrate, is also introduced in the present LB approach through the strategy proposed by Ding and Spelt [J. Fluid Mech. 599, 341 (2008)10.1017/S0022112008000190]. The present method is first validated by simulating droplet spreading and capillary intrusion on the ideal or smooth pipes. It is found that the cubic surface-energy and geometrical wetting schemes both offer considerable accuracy for predicting a static contact angle within its middle region, while the former is more stable at extremely small contact angles. Besides, it is shown that the geometrical wetting scheme enables us to obtain better accuracy for predicting dynamic contact points in capillary pipe. Then we use the present LB method to simulate the droplet shearing processes on a nonideal substrate with contact angle hysteresis. The geometrical wetting model is found to be capable of reproducing four typical motion modes of contact line, while the surface-energy wetting scheme fails to predict the hysteresis behaviors in some cases. At last, a complex contact-line dynamic problem of three-dimensional microscale droplet impact on a wettable solid is simulated, and it is found that the numerical results for droplet shapes agree well with the experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.063306DOI Listing

Publication Analysis

Top Keywords

contact angle
12
geometrical wetting
12
lattice boltzmann
8
boltzmann method
8
contact-line motion
8
binary fluids
8
high density
8
cubic surface-energy
8
contact angles
8
accuracy predicting
8

Similar Publications

Gibbons, a type of lesser ape, are brachiators but also walk bipedally and without forelimb assistance, not only on the ground but also on tree branches. The arboreal bipedal walking strategy of the gibbons has been studied in previous studies in relation to two-dimensional (2D) kinematic analysis. However, because tree branches and the ground differ greatly in width, leading to a constrained foot contact point on the tree branches, gibbons must adjust their 3D joint motions of trunk and hindlimb on the tree branches.

View Article and Find Full Text PDF

Purpose: To assess the impact of anodization and instrumentation on titanium abutment surface characteristics (surface roughness and wettability) and biofilm formation (viability and mass).

Materials And Methods: Titanium discs were obtained from pre-milled abutment blanks made of titanium-6aluminum-7niobium alloy. Polished samples were divided into three groups: un-anodized, gold-anodized, and pink-anodized.

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.

View Article and Find Full Text PDF

Oil spills and industrial oily wastewater pose serious threats to the environment. A series of modified membranes with special wettability have been widely used for separating oil/water mixtures and emulsions. However, these membranes still face challenges such as the detachment of the modified coatings and membrane fouling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!