Microstructure of nonideal methanol binary liquid mixtures.

Phys Rev E

Institut de Physique de Rennes, UMR 6251 CNRS, Université de Rennes, 263 avenue Général Leclerc, 35042 Rennes, France.

Published: June 2019

The nonideality of binary mixtures is often related to the nature of the interactions between both liquids and of the heterogeneity at the nanoscale-named microstructure. When one of the liquids is a hydrogen bonds former and the second is aprotic, the progressive diluting of the hydrogen-bonding network leads to a clustering and nanophases. By considering two mixtures, toluene-methanol and cyclohexane-methanol, the nonideality and its connection with the structure at the nanoscale and the intermolecular interactions are numerically investigated. Contrary to the toluene that is fully miscible in methanol, cyclohexane presents a high range of immiscibility which makes it a relevant system to study the nucleation (local segregation) and its propagation. In both mixtures, the deviation from the ideal behavior is observed. In the case of the toluene-methanol mixture, the initial hydrogen-bonding network corresponding to a homogenous structure is locally broken due to the favorable toluene-methanol interactions leading to the spatial heterogeneity at the origin of the nonideality. In the range of miscibility of the cyclohexane-methanol mixtures, the formation of hydrophobic nanophases of larger size is observed due to the unfavorable interactions between both components leading to a self-organizing of cyclohexane molecules. The immiscibility of cyclohexane and methanol are then correlated to the formation of nanophases and their propagation, which are also at the origin of the spatial heterogeneity. In the pure methanol, we highlight the disconnection between the clustering and the heterogeneity. We shed light on the fact that the prepeak observed in the structure factor is independent of the degree of heterogeneity, but is connected to the presence of cyclic clusters.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.062607DOI Listing

Publication Analysis

Top Keywords

hydrogen-bonding network
8
spatial heterogeneity
8
mixtures
5
heterogeneity
5
microstructure nonideal
4
methanol
4
nonideal methanol
4
methanol binary
4
binary liquid
4
liquid mixtures
4

Similar Publications

In this experiment, we investigated the structural properties, digestibility, and variations in antioxidant activity of rice bran-tissue peanut protein (RB-TPP), which was created through high-moisture extrusion between peanut protein powder (PPP) and various additions (0 %, 5 %, 10 %, 15 %, and 20 %) of rice bran (RB). The disulfide bonding and hydrophobic interactions were strengthened, and the hydrogen bonding in the RB-TPP was weakened by adding 5-10 % RB. Additionally, the β-sheet content reached its maximum at RB-10 %, which allowed the hydrophobic groups to be encapsulated ina stable protein network fiber structure, enhancing degree of organization, the thermal stability and digestibility of RB-TPP.

View Article and Find Full Text PDF

In the present study, the effects of glucono-δ-lactone (GDL) as an acid reagent during thermal treatment on the quality of alkaline dough and steamed buns were examined. During the heating process, GDL improved the viscoelasticity and fluidity of the alkaline dough and enhanced intermolecular hydrogen bonding. The hardness of steamed buns was reduced by 61.

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.

ACS Mater Au

January 2025

Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.

View Article and Find Full Text PDF

1.5D Chiral Perovskites Mediated by Hydrogen-Bonding Network with Remarkable Spin-Polarized Property.

Angew Chem Int Ed Engl

January 2025

Tianjin University, School of Chemical Engineering and Technology, Yaguan Road #135, Jinnan District, Tianjin 300354, P. R. China, CHINA.

In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!