Emergence and percolation of rigid domains during the colloidal glass transition.

Phys Rev E

Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: June 2019

Using video microscopy, we measure local spatial constraints in disordered binary colloidal samples, ranging from dilute fluids to jammed glasses, and probe their spatial and temporal correlations to local dynamics during the glass transition. We observe the emergence of significant correlations between constraints and local dynamics within the Lindemann criterion, which coincides with the onset of glassy dynamics in supercooled liquids. Rigid domains in fluids are identified based on local constraints and demonstrate a percolation transition near the glass transition, accompanied by the emergence of dynamical heterogeneities. Our results show that spatial constraint instead of the geometry of amorphous structures is the key that connects the complex spatial-temporal correlations in disordered materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.062610DOI Listing

Publication Analysis

Top Keywords

glass transition
12
rigid domains
8
local dynamics
8
emergence percolation
4
percolation rigid
4
domains colloidal
4
colloidal glass
4
transition
4
transition video
4
video microscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!