Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intensive and unregulated use of feed additives in China has led to high levels of heavy metals such as copper and zinc in fertilizers, considerable quantities of which find their way into the environment. Studies have shown that composting could significantly decrease the bioavailability of heavy metals. This study was to investigate the effects of addition of biochar and a microbial agent on the morphological changes in copper and zinc during composting. Results show that treatment T8 successfully immobilized 70.36% of copper as a result of biochar addition. Treatment T3 successfully immobilized 40.76% of zinc; transformation of zinc to a higher stable state was found to be closely related to the formation of fulvic and humic acids. Results of fluorescence spectrum analysis also corroborate that the conversion of copper and zinc to forms with higher stability was associated with the formation of fulvic and humic acid-like substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.121752 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!