Background: NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O) and/or hydrogen peroxide (HO). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action.
Experimental Approach: We used cell lines expressing high levels of human NOX isoforms (NOX1-5, DUOX1 and 2) to detect NOX-derived O or HO using a variety of specific probes. NOX inhibitory activity of diphenylene iodonium (DPI), apocynin, diapocynin, ebselen, GKT136901 and VAS2870 was tested on NOX isoforms in cellular and membrane assays. Additional assays were used to identify potential off target effects, such as antioxidant activity, interference with assays or acute cytotoxicity.
Key Results: Cells expressing active NOX isoforms formed O, except for DUOX1 and 2, and in all cases activation of NOX isoforms was associated with the detection of extracellular HO. Among all molecules tested, DPI elicited dose-dependent inhibition of all isoforms in all assays, however all other molecules tested displayed interesting pharmacological characteristics, but did not meet criteria for bona fide NOX inhibitors.
Conclusion: Our findings indicate that experimental results obtained with widely used NOX inhibitors must be carefully interpreted and highlight the challenge of developing reliable pharmacological inhibitors of these key molecular targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658998 | PMC |
http://dx.doi.org/10.1016/j.redox.2019.101272 | DOI Listing |
Antioxidants (Basel)
November 2024
Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:
NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea.
Oxidative stress is linked to the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder marked by memory impairment and cognitive decline. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau. AD is associated with an imbalance in redox states and excessive reactive oxygen species (ROS).
View Article and Find Full Text PDFPharmacopsychiatry
November 2024
Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Background: Nicotinamide adenosine dinucleotide phosphate oxidases (NOX) play important roles in mediating stress-induced depression. Three NOX isotypes are expressed mainly in the brain: NOX2, NOX3 and NOX4. In this study, the expression and cellular sources of these NOX isoforms was investigated in the context of stress-induced depression.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA.
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!