Development of nucleic acid isolation by non-silica-based nanoparticles and real-time PCR kit for edible vegetable oil traceability.

Food Chem

College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou 450002, China. Electronic address:

Published: December 2019

For efficient extraction of amplifiable DNA from edible vegetable oils, we developed a novel DNA extraction approach based on the non-silica-based dipolar nanocomposites. The nanoparticle comprises a hydrophilic polymethyl methacrylate core with abundant capillaries, hydrophilic vesicles decorated with molecules having DNA affinity and a coating hydrophobic polystyrene layer. The nanoparticles are soluble in oil, adsorb the DNA from the aqueous phase and gave a high DNA recovery ratio. All DNA extracts from fully refined vegetable oil soybean, peanut, rapeseed, and cottonseed oils, including their blends, were sufficiently pure to be amplified by real-time PCR targeting the chloroplast ribulose-1,5-bisphosphate gene (rbcL), therefore, the species of origin and their ratios in mixed vegetable oils blended from two or three oil-species could be determined. These results indicate that the novel DNA isolation and real-time PCR kit is a simple, sensitive and efficient tool for the species identification and traceability in refined vegetable oils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2019.125205DOI Listing

Publication Analysis

Top Keywords

real-time pcr
12
vegetable oils
12
pcr kit
8
edible vegetable
8
vegetable oil
8
novel dna
8
refined vegetable
8
dna
7
vegetable
5
development nucleic
4

Similar Publications

Background: Post-stroke depression (PSD) is the most prevalent neuropsychiatric complication following a stroke. The inflammatory theory suggests that PSD may be associated with an overactive inflammatory response. However, research findings regarding inflammation-related indicators in PSD remain inconsistent and elusive.

View Article and Find Full Text PDF

Downregulation of SLC7A11 by Bis(4-Hydroxy-3,5-Dimethylphenyl) Sulfone Induces Ferroptosis in Hepatocellular Carcinoma Cell.

Mol Carcinog

January 2025

Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China.

The progression of tumors has been demonstrated to have a strong correlation with ferroptosis. Bis(4-hydroxy-3,5-dimethylphenyl) sulfone (TMBPS) has been shown to effectively inhibit the proliferation of hepatocellular carcinoma (HCC), but its underlying mechanism is not clear. In this study, ferrostatin-1 (Fer-1) was employed to explore whether the death of HCC cells caused by TMBPS is related to ferroptosis.

View Article and Find Full Text PDF

The primary intent of this manuscript is to ascertain the effect of cucurbitacin IIa on ulcerative colitis (UC) and illustrate the potential mechanisms based on intestinal barrier function and the PERK/ATF4/CHOP signaling pathway. The UC mouse model was constructed by drinking 3% dextran sulfate sodium (DSS) for 1 week. The colonic tissues were stained with HE to assess pathological changes.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid.

Small

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!