Timber harvest has many effects on aquatic ecosystems, including changes in hydrological, biogeochemical, and ecological processes that can influence mercury (Hg) cycling. Although timber harvest's influence on aqueous Hg transformation and transport are well studied, the effects on Hg bioaccumulation are not. We evaluated Hg bioaccumulation, biomagnification, and food web structure in 10 paired catchments that were either clear-cut in their entirety, clear-cut except for an 8-m wide riparian buffer, or left unharvested. Average mercury concentrations in aquatic biota from clear-cut catchments were 50% higher than in reference catchments and 165% higher than in catchments with a riparian buffer. Mercury concentrations in aquatic invertebrates and salamanders were not correlated with aqueous THg or MeHg concentrations, but rather treatment effects appeared to correspond with differences in the utilization of terrestrial and aquatic basal resources in the stream food webs. Carbon and nitrogen isotope data suggest that a diminished shredder niche in the clear-cut catchments contributed to lower basal resource diversity compared with the reference of buffered treatments, and that elevated Hg concentrations in the clear-cut catchments reflect an increased reliance on aquatic resources in clear-cut catchments. In contrast, catchments with riparian buffers had higher basal resource diversity than the reference catchments, indicative of more balanced utilization of terrestrial and aquatic resources. Further, following timber harvest THg concentrations in riparian songbirds were elevated, suggesting an influence of timber harvest on Hg export to riparian food webs. These data, coupled with comparisons of individual feeding guilds, indicate that changes in organic matter sources and associated effects on stream food web structure are important mechanisms by which timber harvest modifies Hg bioaccumulation in headwater streams and riparian consumers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6799996PMC
http://dx.doi.org/10.1016/j.envpol.2019.07.025DOI Listing

Publication Analysis

Top Keywords

timber harvest
20
clear-cut catchments
16
food web
12
web structure
12
catchments
9
headwater streams
8
riparian buffer
8
mercury concentrations
8
concentrations aquatic
8
reference catchments
8

Similar Publications

Combating trade in illegal wood and forest products with machine learning.

PLoS One

January 2025

Department of Computer Science, Virginia Tech, Arlington, VA, United States of America.

Trade in wood and forest products spans the global supply chain. Illegal logging and associated trade in forest products present a persistent threat to vulnerable ecosystems and communities. Illegal timber trade has been linked to violations of tax and conservation laws, as well as broader transnational crimes.

View Article and Find Full Text PDF

Context: The vegetation composition of northeastern North American forests has significantly changed since pre-settlement times, with a marked reduction in conifer-dominated stands, taxonomic and functional diversity. These changes have been attributed to fire regime shifts, logging, and climate change.

Methods: In this study, we disentangled the individual effects of these drivers on the forest composition in southwestern Quebec from 1830 to 2000 by conducting retrospective modelling using the LANDIS-II forest landscape model.

View Article and Find Full Text PDF

Determining the harvest location of timber is crucial to enforcing international regulations designed to protect natural resources and to tackle illegal logging and associated trade in forest products. Stable isotope ratio analysis (SIRA) can be used to verify claims of timber harvest location by matching levels of naturally occurring stable isotopes within wood tissue to location-specific ratios predicted from reference data ("isoscapes"). However, overly simple models for predicting isoscapes have so far limited the confidence in derived predictions of timber provenance.

View Article and Find Full Text PDF

Revealing the status of forests is important for sustainable forest management. The basis of the concept lies in meeting the needs of future generations and today's generations in the management of forests. The use of remote-sensing (RS) technologies and geographic information systems (GIS) techniques in revealing the current forest structure and in long-term planning of forest areas with multipurpose planning techniques is increasing day by day.

View Article and Find Full Text PDF

Temperate forests cover 25% of the world's forest area and most of them are managed for timber production. To increase yields, native deciduous trees have been commonly replaced by fast-growing conifers, especially in Western and Central Europe. Despite the importance of forest soils for a variety of ecosystem functions, the effects of forest management intensity on soil biological processes have not yet been sufficiently understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!