Silver nanoparticles (AgNPs) are widely incorporated in many products, partly due to their antimicrobial properties. The subsequent discharge of this form of silver into wastewater leads to an accumulation of silver species (AgNPs and derivatives resulting from their chemical transformation), in sewage sludge. As a result of the land application of sewage sludge for agricultural or remediation purposes, soils are the primary receiver media of silver contamination. Research on the long-term impact of AgNPs on the environment is ongoing, and this paper is the first review that summarizes the existing state of scientific knowledge on the potential impact of silver species introduced into the soil via sewage sludge, from microorganisms to earthworms and plants. Silver species can easily enter cells through biological membranes and affect the physiology of organisms, resulting in toxic effects. In soils, exposure to AgNPs may change microbial biomass and diversity, decrease plant growth and inhibit soil invertebrate reproduction. Physiological, biochemical and molecular effects have been documented in various soil organisms and microorganisms. Negative effects on organisms of the dominant form of silver in sewage sludge, silver sulfide (AgS), have been observed, although these effects are attenuated compared to the effects of metallic AgNPs. However, silver toxicity is complex to evaluate and much remains unknown about the ecotoxicology of silver species in soils, especially with respect to the possibility of transfer along the trophic chain via accumulation in plant and animal tissues. Critical points related to the hazards associated with the presence of silver species in the environment are described, and important issues concerning the ecotoxicity of sewage sludge applied to soil are discussed to highlight gaps in existing scientific knowledge and essential research directions for improving risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.07.053 | DOI Listing |
Mar Pollut Bull
January 2025
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China.
Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).
View Article and Find Full Text PDFSci Total Environ
January 2025
Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand. Electronic address:
Tomato brown rugose fruit virus (ToBRFV) has emerged as a major plant pathogen with the potential to spread through contaminated wastewater, posing risks to agriculture and public health. This study evaluated ToBRFV as a human-specific microbial source tracking (MST) marker in Thailand, comparing its performance to crAssphage. Using qPCR assays, ToBRFV was detected in 62.
View Article and Find Full Text PDFMar Environ Res
January 2025
University of Technology Sydney, The School of Life Sciences, Ultimo, NSW, 2007, Australia. Electronic address:
Antibiotic resistant bacteria are increasingly being found in aquatic environments, representing a potential threat to public health. To examine the dynamics and potential sources of antibiotic-resistant genes (ARGs) in urbanised waterways, we performed a six-month temporal study at six locations within the Sydney Harbour estuary. These locations spanned a salinity gradient from seawater at the mouth of the harbour to freshwater at the more urbanised western sites.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.
View Article and Find Full Text PDFEcotoxicology
January 2025
Department Sanitary and Environmental Engineering, Rio de Janeiro State University-UERJ, Rio de Janeiro, CEP, Brazil.
Determining environmental risk levels posed to different urban lagoon can provide an important overview regarding the relative severity of the environmental degradation of these ecosystems, increasing the risks visibility, which can be used as an important decision-making tool to prioritize investments. Jacarepaguá Lagoon (JPAL) is part of a coastal lagoon system comprising four interconnected lagoons in Rio de Janeiro city, Southeastern Brazil. Real estate speculation and insufficient sanitation infrastructure resulted in untreated sewage discharge into this ecologically sensitive lagoon system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!