Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnesium (Mg) alloys are embraced for their biodegradability and biocompatibility. However, Mg degrades spontaneously in the biological environment in vivo and in vitro, triggering deposition of calcium phosphate on the metal. Upon complete metal absorption, minerals remain in the tissue, which could lead to pathogenic calcification. Hence, our aims are to test the feasibility of matrix GLA protein (MGP) to locally inhibit Mg mineralization that is induced by metal alloy degradation. MGP is a small secretory protein that has been shown to inhibit soft tissue calcification. We exposed Mg to MGP, stably transfected into mammalian cells. Results showed that less calcium and phosphorous deposition on the Mg surface when MGP was present relative to when it was not. In the in vivo mouse intramuscular model conducted for 4 and 6 weeks, Mg rods were embedded in collagen scaffolds, seeded with cells overexpressing MGP. Microtomography, electron dispersive x-ray spectroscopy, and histology assessments revealed lower deposited mineral volume around Mg rods from the MGP group. Compared to other groups, higher volume loss after implantation was observed from the MGP group at both time points, indicating a higher corrosion rate without the protective mineral layer. This study is the first to our knowledge to demonstrate that local exposure to a biomolecule, such as MGP, can modulate the corrosion of Mg-based implants. These findings may have important implications for the future design of endovascular stents and orthopedic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.05.048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!