Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Aging of the human retina is accompanied by oxidative stress that exerts profound changes in the retinal neurons. It is unknown if oxidative stress influences the cellular components of the retinal vessels in some ways.
Methods: We examined changes in retinal vessels in human donor eyes (age: 35-94 years; N=18) by light and transmission electron microscopy, TUNEL and immunohistochemistry for biomarkers of vascular smooth muscle cells (SMC; actin), oxidative stress (4-hydroxy 2-nonenal [HNE] and nitrotyrosine), microglia (Iba-1) and vessels (isolectin B).
Results: The earliest changes in the endothelium and pericytes of capillaries are apparent from the seventh decade. With aging, there is clear loss of organelles and cytoplasmic filaments, and a progressive thickening of the endothelial and pericyte basal lamina. Loss of filaments, accumulation of lipofuscin and autophagic vacuoles are significant events in aging pericytes and SMC. Actin immunolabelling reveals discontinuity in arterial SMC layers during eighth decade, indicating partial degeneration of SMC. This is followed by hyalinization, with degeneration of the endothelium and SMC in arteries and arterioles of the nerve fibre layer (NFL) and ganglion cell layer in ninth decade. Iba-1 positive microglia were in close contact with the damaged vessels in inner retina, and their cytoplasm was rich in lysosomes. HNE immunoreactivity, but not of nitrotyrosine, was detected in aged vessels from seventh decade onwards, suggesting that lipid peroxidation is a major problem of aged vessels. However, TUNEL positivity seen during this period was limited to few arteries and venules of NFL.
Conclusion: This study shows prominent age-related alterations of the pericytes and SMC of retinal vessels. These changes may limit the energy supply to the neurons and be responsible for age-related loss of neurons of the inner retina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aanat.2019.06.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!