AI Article Synopsis

  • The production of male or female gametes in sexually reproducing organisms is determined by the correct sexual identity in the germline, with the gene Sex lethal (Sxl) playing a crucial role in D. melanogaster.
  • Research reveals that the loss of Sxl does not result in overall masculinization in the germline, but instead impacts specific genes critical for male germline identity, notably Phf7.
  • Additionally, the study identifies Tdrd5l as an important Sxl-regulated gene that promotes male fertility and differentiation, and its expression is linked to post-transcriptional gene regulation in male germ cells.

Article Abstract

For sexually reproducing organisms, production of male or female gametes depends on specifying the correct sexual identity in the germline. In D. melanogaster, Sex lethal (Sxl) is the key gene that controls sex determination in both the soma and the germline, but how it does so in the germline is unknown, other than that it is different than in the soma. We conducted an RNA expression profiling experiment to identify direct and indirect germline targets of Sxl specifically in the undifferentiated germline. We find that, in these cells, Sxl loss does not lead to a global masculinization observed at the whole-genome level. In contrast, Sxl appears to affect a discrete set of genes required in the male germline, such as Phf7. We also identify Tudor domain containing protein 5-like (Tdrd5l) as a target for Sxl regulation that is important for male germline identity. Tdrd5l is repressed by Sxl in female germ cells, but is highly expressed in male germ cells where it promotes proper male fertility and germline differentiation. Additionally, Tdrd5l localizes to cytoplasmic granules with some characteristics of RNA Processing (P-) Bodies, suggesting that it promotes male identity in the germline by regulating post-transcriptional gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645463PMC
http://dx.doi.org/10.1371/journal.pgen.1007617DOI Listing

Publication Analysis

Top Keywords

germline
10
protein 5-like
8
promotes male
8
sexual identity
8
sex lethal
8
identity germline
8
male germline
8
germ cells
8
male
7
sxl
6

Similar Publications

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Hyperparathyroidism-jaw tumor syndrome is a rare form of syndromic primary hyperparathyroidism. We describe a young female with a history of common precursor B acute lymphoblastic leukaemia who was diagnosed with overt primary hyperparathyroidism due to a pathogenic CDC73 variant (c.25C > T).

View Article and Find Full Text PDF

Background: Previously, we found that germline C3 deletion protected cognition and hippocampal synapses in aged APP/PS1dE9 mice, despite increasing Aß plaques. Here, we crossed our C3 inducible conditional mouse model to APP knockin mice to determine whether global C3 lowering in an adult amyloid mouse model would be protective.

Methods: C3;Rosa26-Cre-ERT2 (C3iKO) mice were crossed to C3;APP mice to generate APP;C3iKO mice, which received 75 mg/kg tamoxifen (TAM; n = 16) or corn oil (CO; n = 15) for 5 days at 3.

View Article and Find Full Text PDF

Background: Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically-engineered marmosets that carry knock-in (KI) point mutations in the presenilin-1 (PSEN1) gene that can be studied from birth throughout lifespan.

Method: CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!