Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Person re-identification (re-id) aims to match people across non-overlapping camera views in a public space. This is a challenging problem because the people captured in surveillance videos often wear similar clothing. Consequently, the differences in their appearance are typically subtle and only detectable at particular locations and scales. In this paper, we propose a deep re-id network (MuDeep) that is composed of two novel types of layers - a multi-scale deep learning layer, and a leader-based attention learning layer. Specifically, the former learns deep discriminative feature representations at different scales, while the latter utilizes the information from multiple scales to lead and determine the optimal weightings for each scale. The importance of different spatial locations for extracting discriminative features is learned explicitly via our leader-based attention learning layer. Extensive experiments are carried out to demonstrate that the proposed MuDeep outperforms the state-of-the-art on a number of benchmarks and has a better generalization ability under a domain generalization setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2019.2928294 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!