Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040943 | DOI Listing |
Nanophotonics
April 2024
State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China.
Topological photonic crystals have great potential in the application of on-chip integrated optical communication devices. Here, we successfully construct the on-chip transmissible topological edge states using one-dimensional Su-Schrieffer-Heeger (SSH) photonic crystals with defect cavities on silicon-on-insulator slab. Different coupling strengths between the lateral modes and diagonal modes in photonic crystal defect cavities are used to construct the SSH model.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
A quantum-electrodynamics approach is presented to describe the dynamics of electrons that exchange energy with both photon and phonon baths. Our ansatz is a dissipative quantum Liouville equation, cast in the Redfield form, with two driving terms associated with radiative and vibrational relaxation mechanisms, respectively. Remarkably, within the radiative contribution, there is a term that exactly replicates the expression derived from a semiclassical treatment where the power dissipated by the electronic density is treated as the emission from a classical dipole [Bustamante et al.
View Article and Find Full Text PDFWe numerically investigate the optical bistability from a two-dimensional photonic crystal L6 nanocavity dimer array structure configured under the Su-Schrieffer-Heeger model. The localized electric field in the topological edge state is highly enhanced, which gives rise to strong nonlinear phenomena such as optical bistability. In comparison, a topologically trivial nanocavity is also designed and its field strength distribution and optical bistable response are also simulated.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Psychology, New York University, New York, NY, USA.
We can often anticipate the precise moment when a stimulus will be relevant for our behavioral goals. Voluntary temporal attention, the prioritization of sensory information at task-relevant time points, enhances visual perception. However, the neural mechanisms of voluntary temporal attention have not been isolated from those of temporal expectation, which reflects timing predictability rather than relevance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!