MiR-214 has been reported to act as a tumor suppressor or oncogene involved in various malignancies. However, the biological functions and molecular mechanisms of miR-214 in hepatocellular carcinoma (HCC) still remain unclear. Previous studies suggest that pyruvate dehydrogenase kinase 2 (PDK2) and plant homeodomain finger protein 6 (PHF6) may be involved in some tumor cell proliferation and migration. Therefore, we studied the relationship between PDK2/PHF6 and miR-214. The expression of miR-214, PDK2, and PHF6 was determined by quantitative real-time polymerase chain reaction in HCC tissues and cell lines. The Luciferase reporter assay was used to confirm the interaction between miR-214 and PDK2/PHF6. Cell proliferation, apoptosis, and migration were evaluated by cell counting kit-8 assay, flow cytometry, and transwell assay, respectively. The expressions levels of α-smooth muscle actin (α-SMA) and E-cadherin were detected via immunofluorescence assay. Here, we found that the expression of miR-214 decreased in HCC and was negatively correlated with PDK2 and PHF6. Moreover, PDK2 and PHF6 were the direct targets of miR-214 in HCC cells. Functional analysis showed that knockdown of PDK2 or PHF6 as well as miR-214 overexpression significantly suppressed cell proliferation and migration in HCC cells. Furthermore, we found that the suppression of cell proliferation and migration through PDK2 or PHF6 knockdown could be partially reversed by miR-214 down-regulation. Moreover, we demonstrated a decrease of mesenchymal cell marker α-SMA and increase of the epithelial marker E-cadherin after miR-214 overexpression, PDK2 knockdown or PHF6 knockdown, respectively, which also suggested that cell proliferation and migration were suppressed. Additionally, lactate and pyruvic acid production experiments confirmed miR-214 could suppress the HCC cell lactate and pyruvic acid levels by down-regulating PDK2/PHF6. In conclusion, MiR-214 may act as a tumor suppressor gene, presenting its suppressive role in cell proliferation and migration of HCC cells by targeting PDK2 and PHF6, and might provide a potential therapy target for patients with HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11207 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!