A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of High-Pressure Microfluidization Treatment on the Foaming Properties of Pea Albumin Aggregates. | LitMetric

The effect of dynamic high-pressure treatment, also named microfluidization, on the surface properties of thermal pea albumin aggregates (AA) and their foaming ability was investigated at pH 3, 5, and 7. The solubility of albumin particles was not affected by the increase in microfluidization pressure from 70 to 130 MPa. Particle charge depended only on the pH, whereas protein surface hydrophobicity was stable at pH 5, decreased at pH 3, but increased at pH 7 after microfluidization treatment and with the applied pressure. Surface tension of AA measured at air/water interface was favorably affected by the microfluidization treatment at each pH preferentially due to size reduction and increased flexibility of protein particles. The foaming capacity and stability of AA depended on the pH conditions and the microfluidization treatment. The high-pressure treatment had little influence in foaming properties at acidic pHs, probably related to a more compact form of AA at these pHs. At neutral pH, the foaming properties of pea AA were strongly influenced by their surface properties and size associated with significant modifications in AA structure with microfluidization. Changes in albumin aggregate characteristics with pH and microfluidization pressure are also expected to modulate other techno-functional properties, such as emulsifying property. PRACTICAL APPLICATION: Albumins are known for their interesting nutritional values because they are rich in essential amino acids. This fraction is not currently marketed as a protein isolate for human consumption, but can be considered as a potential new vegetable protein ingredient. This document demonstrated that heat treatment or dynamic high-pressure technology can control the foaming properties of this protein for possible use in expanded foods.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.14734DOI Listing

Publication Analysis

Top Keywords

microfluidization treatment
16
foaming properties
16
properties pea
8
pea albumin
8
albumin aggregates
8
dynamic high-pressure
8
high-pressure treatment
8
surface properties
8
microfluidization pressure
8
treatment
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!