Synthetic cannabinoids are a group of novel psychoactive substances with similar properties to Δ9-THC. Among the vast number of synthetic cannabinoids, designed to be tested in clinical trials, JWH-018 was the first novel psychoactive substance found in the recreational drug marketplace. The consumption of JWH-018 shows typical effects of CB1 agonists including sedation, cognitive dysfunction, tachycardia, postural hypotension, dry mouth, ataxia and psychotropic effects, but appeared to be more potent than Δ9-THC. However, studies on human cells have shown that JWH-018 toxicity depends on the cellular line used. Despite these studies, the underlying molecular mechanisms to JWH-018 action has not been clarified yet. To understand the impact of JWH-018 at molecular and cellular level, we used Saccharomyces cerevisiae as a model. The results showed an increase in yeast growth rate in the presence of this synthetic cannabinoid due to an enhancement in the glycolytic flux at expense of a decrease in pentose phosphate pathway, judging by 2D-Gel proteomic analysis, qRT-PCR experiments and ATP measurements. Overall, our results provide insights into molecular mechanisms of JWH-018 action, also indicating that Saccharomyces cerevisiae is a good model to study synthetic cannabinoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsyr/foz042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!