According to the amyloid cascade hypothesis, the earliest trigger in the development of Alzheimer's disease (AD) is the accumulation of toxic amyloid-β (Aβ) fragments, eventually leading to the classical features of the disease: amyloid plaques, neurofibrillary tangles and synaptic and neuronal loss. The lack of relevant non-transgenic preclinical models reflective of disease progression is one of the main factors hindering the discovery of effective drug treatments. To this end, we have developed a protocol for the fabrication of alginate microbeads containing amyloid-secreting cells useful for the study of the effects of chronic Aβ production. Chinese hamster ovary cells previously transfected with a human APP gene, secreting Aβ (i.e., 7PA2 cells), were used in this study. A three-dimensional (3D) in vitro model for the sustained release of Aβ was fabricated by encapsulation of 7PA2 cells in alginate. The process was optimized to target a bead diameter of 500-600 μm for further in vivo studies. Optimization of 7PA2 cell encapsulation in alginate was performed altering fabrication parameters, e.g., alginate concentration, gel flow rate, electrostatic potential, head vibration frequency, gelling solution. Levels of secreted Aβ were analyzed over time and compared between alginate beads and standard cell culture methods (up to 96 h). A concentration of 1.5 x 10 7PA2 cells/mL and an alginate concentration of 2% (w/v) buffered with HEPES and subsequent gelation in 0.5 M calcium chloride for 5 min were found to fabricate the most stable microbeads. Fabricated microbeads were 1) of uniform size, 2) with an average diameter of 550 μm, 3) containing about 100-150 cells per microbead and 4) able to secrete Aβ. In conclusion, our optimized method for the production of stable alginate microbeads containing amyloid-producing 7PA2 cells might enable the modeling of important aspects of AD both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/59597 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:
Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Biomaterials
December 2024
Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China. Electronic address:
Radiation therapy is a primary modality for cancer treatment; however, it often leads to various degrees of skin injuries, ranging from mild rashes to severe ulcerations, for which no effective treatments are currently available. In this study, a multifunctional microsphere (PC@CuS-ALG) was synthesized by encapsulating phycocyanin-templated copper sulfide nanoparticles (PC@CuS) within alginate (ALG) using microfluidic technology. Phycocyanin, a natural protein derived from microalgae, shows abilities to scavenge reactive oxygen species, repair radiation-induced damage to skin cells, and ameliorate macrophage-related inflammatory responses.
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Environ Pollut
December 2024
Marine Trace Metal Biogeochemistry Laboratory, Centre for Ocean, River, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!