We performed spatially resolved near-ambient-pressure photoemission spectromicroscopy on graphene-coated copper in operando under oxidation conditions in an oxygen atmosphere (0.1 mbar). We investigated regions with bare copper and areas covered with mono- and bi-layer graphene flakes, in isobaric and isothermal experiments. The key method in this work is the combination of spatial and chemical resolution of the scanning photoemission microscope operating in a near-ambient-pressure environment, thus allowing us to overcome both the material and pressure gap typical of standard ultrahigh-vacuum X-ray photoelectron spectroscopy (XPS) and to observe in operando the protection mechanism of graphene toward copper oxidation. The ability to perform spatially resolved XPS and imaging at high pressure allows for the first time a unique characterization of the oxidation phenomenon by means of photoelectron spectromicroscopy, pushing the limits of this technique from fundamental studies to real materials under working conditions. Although bare Cu oxidizes naturally at room temperature, our results demonstrate that such a graphene coating acts as an effective barrier to prevent copper oxidation at high temperatures (over 300 °C), until oxygen intercalation beneath graphene starts from boundaries and defects. We also show that bilayer flakes can protect at even higher temperatures. The protected metallic substrate, therefore, does not suffer corrosion, preserving its metallic characteristic, making this coating appealing for any application in an aggressive atmospheric environment at high temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b08918 | DOI Listing |
Adv Mater
January 2025
Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O, N and CO) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e ORR), a sustainable pathway for activating O to hydrogen peroxide (HO). Here we report 2e ORR expedited in a fluorine-bridged copper metal-organic framework catalyst, arising from the water spillover effect.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
Selective catalytic oxidation (SCO) of NH to N is one of the most effective methods used to eliminate NH emissions. However, achieving high conversion over a wide operating temperature range while avoiding over-oxidation to NO remains a significant challenge. Here, we report a bi-metallic surficial catalyst (PtCuO/AlO) with improved Pt atom efficiency that overcomes the limitations of current catalysts.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Tata Institute of Fundamental Research Hyderabad, Sy No 36/P, Serilingampally Mandal, Hyderabad 500046, India.
Ultra-low magnetic field sensing is emerging as a tool for materials' diagnostics, particularly for the operando studies of electrochemical systems. A magnetic metrology system having the capability of sensing fields as low as ∼1.88 pT has been setup for such studies using a commercial atomic magnetometer.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kongens Lyngby, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!