Based on the transcriptome analysis data of a Bacillus licheniformis, a novel bidirectional promoter was identified from the strain and its transcriptional strength was analyzed. The expression level of a Bacillus clausii derived alkaline protease gene driven by the bidirectional promoter was studied by using the known strong constitutive promoter pShuttle-09 as a control. Three recombinant expression vectors and the corresponding recombinant bacteria were constructed. Under the control of the new promoter pLA and its reverse promoter pLB, the alkaline protease expression level respectively reached 164 U/mL and 111 U/mL. The results indicated that the transcription strength of pLA was significantly higher than that of pShuttle-09 and pLB, and both the pLA and pLB promoters could initiate the expression of the alkaline protease. Thus, it provides a new expression element for the heterogenous genes in Bacillus sp. and a new idea for the co-expression of two genes in one prokaryotic strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.190028 | DOI Listing |
Genes (Basel)
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia.
Background/objectives: Transcriptional promoters play an essential role in regulating protein expression. Promoters with weak activity generally lead to low levels of expression, resulting in fewer proteins being produced. At the same time, strong promoters are commonly used in studies using transgenic organisms as model systems.
View Article and Find Full Text PDFBMC Public Health
January 2025
Dasman Diabetes Institute, Kuwait City, Kuwait.
Background: Anxiety disorders are the second most common mental health disorders in terms of disability-adjusted life years and years of life lost across all age groups. A bidirectional relationship between anxiety disorders and diabetes mellitus has been documented. This study aimed to determine the prevalence of anxiety and its associated factors among patients with diabetes receiving care at public primary care clinics in Kuwait during the first quarter of 2024.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China.
Bidirectional promoters (BDPs) regulate the transcription of two adjacent, oppositely oriented genes, offering a compact structure with significant potential for multigene expression systems. Although BDPs are evolutionarily conserved, their regulatory roles and sequence characteristics vary across species, with limited studies in fish. Here, we systematically analyzed the distribution, sequence features, and expression patterns of BDPs in the medaka () genome.
View Article and Find Full Text PDFbioRxiv
December 2024
Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
December 2024
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!