Self-assembling outside equilibrium: emergence of structures mediated by dissipation.

Phys Chem Chem Phys

Departament de Física de la Matéria Condensada, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain.

Published: August 2019

A set of disordered interacting building blocks may form ordered structures by means of a self-assembling process. An external intervention in the system by adding a chemical species or by applying forces leads to different self-assembly scenarios with the appearance of new structures. For instance, the formation of microtubules, gels, virus capsides, cells and living beings among others takes place by self-assembly under nonequilibrium conditions. A general evolution criterion able to account for why nature selects some structures outside equilibrium and not others is lacking. Nevertheless, progress in the understanding of nonequilibrium self-assembly (NESA) mechanisms has been made thanks to the formulation of models that take particular situations into consideration. We review recent efforts devoted to describing self-assembly out of equilibrium and we provide a reference linking several current concepts in order to help in the development of new models and experimental studies. We hope that the knowledge of the intimate mechanisms leading to the formation of structures will make the implementation of re-configurable and bio-inspired materials possible and give a simpler perspective on the understanding of the emergence of life.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp01088bDOI Listing

Publication Analysis

Top Keywords

structures
5
self-assembling equilibrium
4
equilibrium emergence
4
emergence structures
4
structures mediated
4
mediated dissipation
4
dissipation set
4
set disordered
4
disordered interacting
4
interacting building
4

Similar Publications

The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Recent Australian trends indicate that shave biopsies for diagnosing lesions suspicious of melanoma are increasing, yet reasons for this remain relatively unknown. We sought to understand which factors influence Australian clinicians' use of shave biopsy for managing thin lesions suspicious of melanoma in sites of low cosmetic sensitivity.

Methods: We used a convergent, exploratory mixed-methods design, with a cross-sectional online survey (n = 59) and semi-structured qualitative interviews (n = 15).

View Article and Find Full Text PDF

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!