A new framework for approaching precision bioremediation of PAH contaminated soils.

J Hazard Mater

Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States. Electronic address:

Published: October 2019

Bioremediation is a sustainable treatment strategy which remains challenging to implement especially in heterogeneous environments such as soil and sediment. Herein, we present a novel precision bioremediation framework that integrates amplicon based metagenomic analysis and chemical profiling. We applied this approach to samples obtained at a site contaminated with polycyclic aromatic hydrocarbons (PAHs). Geobacter spp. were identified as biostimulation targets because they were one of the most abundant genera and previously identified to carry relevant degradative genes. Mycobacterium and Sphingomonads spp. were identified as bioaugmentation and genetic bioaugmentation targets, respectively, due to their positive associations with PAHs and their high abundance and species diversity at all sampling locations. Overall, this case study suggests this framework can help identify bacterial targets for precision bioremediation. However, it is imperative that we continue to build our databases as the power of metagenomic based approaches remains limited to microorganisms currently in our databases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833951PMC
http://dx.doi.org/10.1016/j.jhazmat.2019.120859DOI Listing

Publication Analysis

Top Keywords

precision bioremediation
12
spp identified
8
framework approaching
4
approaching precision
4
bioremediation
4
bioremediation pah
4
pah contaminated
4
contaminated soils
4
soils bioremediation
4
bioremediation sustainable
4

Similar Publications

The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation.

View Article and Find Full Text PDF

Harnessing microbes for heavy metal remediation: mechanisms and prospects.

Environ Monit Assess

December 2024

Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India.

Contamination by heavy metals (HMs) poses a significant threat to the ecosystem and its associated micro and macroorganisms, leading to ill effects on humans which necessitate the requirement of effective remediation strategies. Microbial remediation leverages the natural metabolic abilities of microbes to overcome heavy metal pollution effectively. Some of the mechanisms that aids in the removal of heavy metals includes bioaccumulation, biosorption, and biomineralization.

View Article and Find Full Text PDF

High salt concentrations pose a significant challenge to the efficiency of activated sludge (AS) in phenolic wastewater treatment. As a cellular osmoprotectant, proline (Pro) has the capacity to increase the salt tolerance of microbes in AS, hence improving the efficiency of phenolic wastewater degradation. Nevertheless, the precise mechanism behind this enhancement remains ambiguous.

View Article and Find Full Text PDF

Olive mill wastewaters (OMWW) are characterized by a large concentration of pollutants, among which polyphenols represent a large part. This study investigated the effect of different dilutions of a culture medium enriched with olive-derived phenolic compounds on Chlorella vulgaris growth and its ability to degrade each one of them. In particular, polyphenols were precisely identified and quantified by HPLC-DAD analysis, showing high removal efficiency by C.

View Article and Find Full Text PDF

Myeloperoxidase enzyme-catalyzed breakdown of zero-dimension carbon quantum dots.

Front Med Technol

November 2024

Department of Biochemical Engineering, School of Chemical Engineering, Harcourt Butler Technical University, Kanpur, India.

Carbon quantum dots (CQDs) have shown considerable interest in multiple fields including bioimaging, biosensing, photocatalysis, ion sensing, heavy metal detection, and therapy due to highly tunable photoluminescence and good photostability. Apart from having optical properties CQDs offer several advantages such as low toxicity, environmental friendliness, affordability, and simple synthesis methods. Furthermore, by modifying their surface and functionality, it's possible to precisely control their physical and chemical characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!